Affine Variational Inequalities on Normed Spaces

This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 178; číslo 1; s. 36 - 55
Hlavní autoři: Yen, Nguyen Dong, Yang, Xiaoqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2018
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present two basic facts about infinite-dimensional affine variational inequalities: the Lagrange multiplier rule and the solution set decomposition.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1296-3