New subgradient extragradient methods for common solutions to equilibrium problems

In this paper, three parallel hybrid subgradient extragradient algorithms are proposed for finding a common solution of a finite family of equilibrium problems in Hilbert spaces. The proposed algorithms originate from previously known results for variational inequalities and can be considered as mod...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 67; no. 3; pp. 571 - 594
Main Author: Van Hieu, Dang
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2017
Springer Nature B.V
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, three parallel hybrid subgradient extragradient algorithms are proposed for finding a common solution of a finite family of equilibrium problems in Hilbert spaces. The proposed algorithms originate from previously known results for variational inequalities and can be considered as modifications of extragradient methods for equilibrium problems. Theorems of strong convergence are established under the standard assumptions imposed on bifunctions. Some numerical experiments are given to illustrate the convergence of the new algorithms and to compare their behavior with other algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-017-9899-4