Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms

A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 17; H. 7; S. 1283 - 1299
Hauptverfasser: Ahmed, Faez, Deb, Kalyanmoy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.07.2013
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start point and move one grid at a time towards the destination point are proposed. Minimization of traveled distance and maximization of path safety are considered as objectives of this study while path smoothness is considered as a secondary objective. This study makes an extensive analysis of a number of issues related to the optimization of path planning task-handling of constraints associated with the problem, identifying an efficient path representation scheme, handling single versus multiple objectives, and evaluating the proposed algorithm on large-sized grids and having a dense set of obstacles. The study also compares the performance of the proposed algorithm with an existing GA-based approach. The evaluation of the proposed procedure against extreme conditions having a dense (as high as 91 %) placement of obstacles indicates its robustness and efficiency in solving complex path planning problems. The paper demonstrates the flexibility of evolutionary computing approaches in dealing with large-scale and multi-objective optimization problems.
AbstractList A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start point and move one grid at a time towards the destination point are proposed. Minimization of traveled distance and maximization of path safety are considered as objectives of this study while path smoothness is considered as a secondary objective. This study makes an extensive analysis of a number of issues related to the optimization of path planning task-handling of constraints associated with the problem, identifying an efficient path representation scheme, handling single versus multiple objectives, and evaluating the proposed algorithm on large-sized grids and having a dense set of obstacles. The study also compares the performance of the proposed algorithm with an existing GA-based approach. The evaluation of the proposed procedure against extreme conditions having a dense (as high as 91 %) placement of obstacles indicates its robustness and efficiency in solving complex path planning problems. The paper demonstrates the flexibility of evolutionary computing approaches in dealing with large-scale and multi-objective optimization problems.
A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start point and move one grid at a time towards the destination point are proposed. Minimization of traveled distance and maximization of path safety are considered as objectives of this study while path smoothness is considered as a secondary objective. This study makes an extensive analysis of a number of issues related to the optimization of path planning task-handling of constraints associated with the problem, identifying an efficient path representation scheme, handling single versus multiple objectives, and evaluating the proposed algorithm on large-sized grids and having a dense set of obstacles. The study also compares the performance of the proposed algorithm with an existing GA-based approach. The evaluation of the proposed procedure against extreme conditions having a dense (as high as 91 %) placement of obstacles indicates its robustness and efficiency in solving complex path planning problems. The paper demonstrates the flexibility of evolutionary computing approaches in dealing with large-scale and multi-objective optimization problems.
Author Ahmed, Faez
Deb, Kalyanmoy
Author_xml – sequence: 1
  givenname: Faez
  surname: Ahmed
  fullname: Ahmed, Faez
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur
– sequence: 2
  givenname: Kalyanmoy
  surname: Deb
  fullname: Deb, Kalyanmoy
  email: deb@iitk.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Department of Information and Service Economy, Aalto University School of Economics
BookMark eNp9kEtLxDAYRYOM4MzoD3BXcB3No03SpQy-YMSN7oSQpmknQyepSSr4722tIAi6-fJB7skNZwUWzjsDwDlGlxghfhURKhCCCBOISpZDcQSWOKcU8pyXi6-dQM5yegJWMe4RIpgXdAleH4cuWeirvdHJvpvM98keVJf1Ku2yvlPOWddmQ5ym6WyyMWVjN6z9wTqVTJ1FH9J02xpnktWZ6lofbNod4ik4blQXzdn3uQYvtzfPm3u4fbp72FxvoaaYJWhYU2nNUa2F5oKhkld1k5NCI0JrWqpa1bhWXChFK0a0EZg1tCybnDEiSFXQNbiY3-2DfxtMTHLvh-DGSklKLFBRjI7GFJ9TOvgYg2mktkkl610KynYSIzmplLNKOaqUk0opRhL_IvswSgof_zJkZuKYda0JP3_6G_oEVYSJxw
CitedBy_id crossref_primary_10_3390_app12063127
crossref_primary_10_1016_j_autcon_2023_105220
crossref_primary_10_1002_ird_2751
crossref_primary_10_1016_j_dwt_2024_100646
crossref_primary_10_1016_j_jenvman_2023_119655
crossref_primary_10_1016_j_mechmachtheory_2018_09_021
crossref_primary_10_3390_app8030407
crossref_primary_10_1016_j_jii_2022_100336
crossref_primary_10_1049_joe_2018_5043
crossref_primary_10_1016_j_ast_2015_09_037
crossref_primary_10_3233_JIFS_169711
crossref_primary_10_3390_s20154258
crossref_primary_10_1049_el_2013_3143
crossref_primary_10_1007_s00170_021_07728_6
crossref_primary_10_1016_j_oceaneng_2023_115433
crossref_primary_10_1155_2021_8824377
crossref_primary_10_1007_s00500_015_1830_2
crossref_primary_10_1007_s10586_017_0924_2
crossref_primary_10_1080_0952813X_2018_1549107
crossref_primary_10_3390_ijgi12030127
crossref_primary_10_4028_www_scientific_net_AMM_536_537_970
crossref_primary_10_1155_2021_1474341
crossref_primary_10_1007_s00500_015_1991_z
crossref_primary_10_1016_j_ifacol_2017_08_2525
crossref_primary_10_1155_2014_614569
crossref_primary_10_1016_j_cie_2019_04_021
crossref_primary_10_1007_s12652_020_02514_w
crossref_primary_10_1016_j_eswa_2022_116875
crossref_primary_10_3233_JIFS_211423
crossref_primary_10_1016_j_asoc_2016_09_032
crossref_primary_10_1007_s40996_020_00352_6
crossref_primary_10_1016_j_eswa_2016_10_045
crossref_primary_10_1016_j_jfranklin_2025_107612
crossref_primary_10_1109_TEVC_2021_3089050
crossref_primary_10_1155_2020_4269193
crossref_primary_10_3390_app14114471
crossref_primary_10_1109_ACCESS_2020_2990199
crossref_primary_10_1016_j_asoc_2015_04_017
crossref_primary_10_1016_j_ijleo_2018_09_104
crossref_primary_10_3390_app12168166
crossref_primary_10_1007_s00521_025_11437_6
crossref_primary_10_1016_j_jclepro_2019_02_127
crossref_primary_10_1007_s00500_015_1736_z
crossref_primary_10_3390_app8091425
crossref_primary_10_1016_j_ast_2016_04_002
crossref_primary_10_1007_s00521_024_10945_1
crossref_primary_10_1016_j_ins_2015_11_004
crossref_primary_10_1007_s00500_016_2138_6
crossref_primary_10_1016_j_engappai_2015_05_011
crossref_primary_10_1016_j_engappai_2025_110444
crossref_primary_10_1016_j_jhydrol_2025_133250
crossref_primary_10_3390_electronics9020290
crossref_primary_10_1007_s00500_016_2122_1
crossref_primary_10_1155_2021_9578783
crossref_primary_10_1016_j_robot_2017_03_021
crossref_primary_10_1155_2016_7189267
crossref_primary_10_1007_s00500_020_05510_6
crossref_primary_10_3390_su14159156
crossref_primary_10_1109_ACCESS_2021_3129265
crossref_primary_10_3390_electronics13193842
crossref_primary_10_1038_s41598_025_96692_2
crossref_primary_10_1007_s00500_014_1459_6
crossref_primary_10_1007_s42405_019_00228_8
crossref_primary_10_4995_wpom_14699
crossref_primary_10_5772_61235
crossref_primary_10_1007_s00500_019_04409_1
crossref_primary_10_3390_a16030162
crossref_primary_10_3390_ma12121982
crossref_primary_10_1007_s00521_017_3069_6
crossref_primary_10_1016_j_ast_2025_109947
crossref_primary_10_3390_mi13040616
crossref_primary_10_1016_j_neucom_2018_06_032
crossref_primary_10_1177_0954406220975065
crossref_primary_10_1155_2019_2902170
crossref_primary_10_1007_s00500_015_1825_z
crossref_primary_10_1155_2021_6681322
crossref_primary_10_3390_app8112253
crossref_primary_10_3390_s20236822
crossref_primary_10_1109_LRA_2023_3334675
crossref_primary_10_1109_TITS_2019_2902927
crossref_primary_10_1007_s00500_016_2414_5
crossref_primary_10_1061__ASCE_CO_1943_7862_0002054
crossref_primary_10_1093_jcde_qwac124
crossref_primary_10_1109_TPDS_2025_3536357
crossref_primary_10_5772_63812
crossref_primary_10_1007_s11047_022_09908_z
crossref_primary_10_1109_ACCESS_2018_2886245
crossref_primary_10_1007_s00500_016_2207_x
crossref_primary_10_1109_TPDS_2014_2325828
crossref_primary_10_1016_j_eswa_2016_03_035
crossref_primary_10_1017_S0263574718000139
crossref_primary_10_1155_2014_104518
crossref_primary_10_3390_s20102827
Cites_doi 10.1002/(SICI)1097-4563(199703)14:3<179::AID-ROB3>3.0.CO;2-O
10.1109/TEVC.2007.892759
10.1109/ROBIO.2011.6181426
10.1145/136035.136037
10.1007/BF00339664
10.1109/CEC.2006.1688529
10.1016/0893-6080(94)E0045-M
10.1080/03052159908941294
10.1007/s10514-005-4052-0
10.1007/s00500-006-0068-4
10.1016/S0045-7825(99)00389-8
10.1145/544741.544841
10.1145/359156.359164
10.1115/1.2826954
10.1109/4235.996017
10.1109/CCECE.2004.1345203
10.1017/CBO9780511546877
10.1080/0305215X.2010.548863
10.1177/027836499701600301
10.1007/BF00339662
10.1023/A:1020564024509
10.1177/027836498600500106
10.1007/BF00735436
10.1023/A:1008920117364
10.1109/34.574801
10.1109/ROBOT.1990.126315
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2012
Springer-Verlag Berlin Heidelberg 2012.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
– notice: Springer-Verlag Berlin Heidelberg 2012.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-012-0964-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1299
ExternalDocumentID 10_1007_s00500_012_0964_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-e6fbcc70dc8c786097bdf425c023d39adad1da78aa3b62ce816f399f466282b53
IEDL.DBID RSV
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 03:02:23 EST 2025
Sat Nov 29 03:19:47 EST 2025
Tue Nov 18 22:35:45 EST 2025
Fri Feb 21 02:40:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Path smoothness
NSGA-II
Potential field
Multi-objective path planning
Path length
Path safety
Genetic algorithms
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e6fbcc70dc8c786097bdf425c023d39adad1da78aa3b62ce816f399f466282b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918055100
PQPubID 2043697
PageCount 17
ParticipantIDs proquest_journals_2918055100
crossref_citationtrail_10_1007_s00500_012_0964_8
crossref_primary_10_1007_s00500_012_0964_8
springer_journals_10_1007_s00500_012_0964_8
PublicationCentury 2000
PublicationDate 20130700
2013-7-00
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 7
  year: 2013
  text: 20130700
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2013
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References AhujaNChuangJShape representation using a generalized potential field modelIEEE Trans Pattern Anal Mach Intell199719216917610.1109/34.574801
DebKGoyalMA robust optimization procedure for mechanical component design based on genetic adaptive searchTrans ASME: J Mech Des1998120216216410.1115/1.2826954
Lozano-PérezTWesleyMAn algorithm for planning collision-free paths among polyhedral obstaclesCommun ACM1979221056057010.1145/359156.359164
Ahmed F, Deb K (2011) Multi-objective path planning using spline representation. In: Proceedings of the IEEE international conference on robotics and biomimetics (IEEE-ROBIO 2011), Piscatway
Sauter J, Matthews R, van Dyke Parunak H, Brueckner S (2002) Evolving adaptive pheromone path planning mechanisms. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, part 1. ACM, pp 434–440
GlasiusRKomodaAGielenSNeural network dynamics for path planning and obstacle avoidanceNeural Networks19958112513310.1016/0893-6080(94)E0045-M
GeSSCuiYJDynamic motion planning for mobile robots using potential field methodAuton Robots20021332072221030.6867510.1023/A:1020564024509
BisseEBentounesMBoukasEKOptimal path generation for a simulated autonomous mobile robotAuton Robots199521112710.1007/BF00735436
DebKGuptaSUnderstanding knee points in bicriteria problems and their implications as preferred solution principlesEng Optim2011431111751204284538010.1080/0305215X.2010.548863
YangSXMengMReal-time collision-free path planning of robot manipulators using neural network approachesAuton Robots200091273910.1023/A:1008920117364
DebKAn efficient constraint handling method for genetic algorithmsComput Methods Appl Mech Eng20001862–43113381028.9053310.1016/S0045-7825(99)00389-8
ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
HwangYAhujaNGross motion planninga surveyACM Comput Surveys (CSUR)199224321929110.1145/136035.136037
Choset H (1996) Sensor based motion planning: the hierarchical generalized Voronoi graph. PhD thesis, Citeseer
Elshamli A, Abdullah HA, Areibi S (2004) Genetic algorithms for dynamic path planning. In: Proceedings of IEEE Canadian conference on electrical and computer engineering (CCECE-04), pp 677–680
CastilloOTrujilloLMultiple objective optimization genetic algorithms for path planning in autonomous mobile robotsInt J Comput Syst Signals2005614863
XueQSheuPCYMaciejewskiAAChienSYPPlanning of collision-free paths for a reconfigurable dual manipulator equipped mobile robotJ Intell Robot Syst201017322324210.1007/BF00339662
Al-SultanKSAliyuMDSA new potential field-based algorithm for path planningJ Intell Robot Syst201017326528210.1007/BF00339664
DebKAgrawalRBSimulated binary crossover for continuous search spaceComplex Syst19959211514813810670843.68023
OrioloGUliviGVendittelliMFuzzy maps: a new tool for mobile robot perception and planningJ Robot Syst199714317919710.1002/(SICI)1097-4563(199703)14:3<179::AID-ROB3>3.0.CO;2-O
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design optimization and control with applications to industrial problems. International Center for Numerical Methods in Engineering (CIMNE), Athens, Greece, pp 95–100
Murrieta-CidRTovarBHutchinsonSA sampling-based motion planning approach to maintain visibility of unpredictable targetsAuton Robots200519328530010.1007/s10514-005-4052-0
DebKAgrawalSPratapAMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge
CastilloOTrujilloLMelinPMultiple objective genetic algorithms for path-planning optimization in autonomous mobile robotsSoft Comput: A Fusion Found Method Appl2007113269279
Xiao M, Michalewicz Z (2000) An evolutionary computation approach to robot planning and navigation. Soft Computing in Mechatronics, pp 117–128
PratiharDDebKGhoshAFuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robotsEng Optim19993211714210.1080/03052159908941294
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
SugiharaKSmithJGenetic algorithms for adaptive planning of path and trajectory of a mobile robot in 2D terrainsIEEE Trans Inf Syst1999821309317
Gerke M (1999) Genetic path planning for mobile robots. In: Proceedings of the American control conference, vol 4. IEEE, pp 2424–2429
Connolly C, Burns J, Weiss R (1990) Path planning using laplace’s equation. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 2102–2106
Burchardt H, Saloman R (2006) Implementation of path planning using genetic algorithms on mobile robots. In: Proceedings of the World Congress on evolutionary computation (WCCI-2006), pp 1831–1836
KanayamaYHartmanBSmooth local-path planning for autonomous vehiclesInt J Robot Res199716326310.1177/027836499701600301
KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res1986519084680110.1177/027836498600500106
O Castillo (964_CR6) 2005; 6
SS Ge (964_CR17) 2002; 13
E Bisse (964_CR4) 1995; 2
964_CR8
K Deb (964_CR14) 1998; 120
964_CR34
964_CR9
K Deb (964_CR13) 2002; 6
964_CR16
T Lozano-Pérez (964_CR24) 1979; 22
964_CR18
N Ahuja (964_CR2) 1997; 19
D Pratihar (964_CR27) 1999; 32
964_CR30
964_CR11
Q Xue (964_CR31) 2010; 17
SX Yang (964_CR32) 2000; 9
K Deb (964_CR15) 2011; 43
K Deb (964_CR10) 2000; 186
K Deb (964_CR12) 1995; 9
964_CR1
Y Kanayama (964_CR21) 1997; 16
964_CR5
R Glasius (964_CR19) 1995; 8
Y Hwang (964_CR20) 1992; 24
964_CR23
R Murrieta-Cid (964_CR25) 2005; 19
964_CR28
O Khatib (964_CR22) 1986; 5
Q Zhang (964_CR33) 2007; 11
KS Al-Sultan (964_CR3) 2010; 17
O Castillo (964_CR7) 2007; 11
K Sugihara (964_CR29) 1999; 82
G Oriolo (964_CR26) 1997; 14
References_xml – reference: DebKAgrawalSPratapAMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: DebKGoyalMA robust optimization procedure for mechanical component design based on genetic adaptive searchTrans ASME: J Mech Des1998120216216410.1115/1.2826954
– reference: XueQSheuPCYMaciejewskiAAChienSYPPlanning of collision-free paths for a reconfigurable dual manipulator equipped mobile robotJ Intell Robot Syst201017322324210.1007/BF00339662
– reference: Ahmed F, Deb K (2011) Multi-objective path planning using spline representation. In: Proceedings of the IEEE international conference on robotics and biomimetics (IEEE-ROBIO 2011), Piscatway
– reference: Lozano-PérezTWesleyMAn algorithm for planning collision-free paths among polyhedral obstaclesCommun ACM1979221056057010.1145/359156.359164
– reference: CastilloOTrujilloLMultiple objective optimization genetic algorithms for path planning in autonomous mobile robotsInt J Comput Syst Signals2005614863
– reference: Sauter J, Matthews R, van Dyke Parunak H, Brueckner S (2002) Evolving adaptive pheromone path planning mechanisms. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, part 1. ACM, pp 434–440
– reference: DebKAn efficient constraint handling method for genetic algorithmsComput Methods Appl Mech Eng20001862–43113381028.9053310.1016/S0045-7825(99)00389-8
– reference: KanayamaYHartmanBSmooth local-path planning for autonomous vehiclesInt J Robot Res199716326310.1177/027836499701600301
– reference: YangSXMengMReal-time collision-free path planning of robot manipulators using neural network approachesAuton Robots200091273910.1023/A:1008920117364
– reference: HwangYAhujaNGross motion planninga surveyACM Comput Surveys (CSUR)199224321929110.1145/136035.136037
– reference: AhujaNChuangJShape representation using a generalized potential field modelIEEE Trans Pattern Anal Mach Intell199719216917610.1109/34.574801
– reference: Elshamli A, Abdullah HA, Areibi S (2004) Genetic algorithms for dynamic path planning. In: Proceedings of IEEE Canadian conference on electrical and computer engineering (CCECE-04), pp 677–680
– reference: Choset H (1996) Sensor based motion planning: the hierarchical generalized Voronoi graph. PhD thesis, Citeseer
– reference: DebKAgrawalRBSimulated binary crossover for continuous search spaceComplex Syst19959211514813810670843.68023
– reference: DebKGuptaSUnderstanding knee points in bicriteria problems and their implications as preferred solution principlesEng Optim2011431111751204284538010.1080/0305215X.2010.548863
– reference: GeSSCuiYJDynamic motion planning for mobile robots using potential field methodAuton Robots20021332072221030.6867510.1023/A:1020564024509
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
– reference: Gerke M (1999) Genetic path planning for mobile robots. In: Proceedings of the American control conference, vol 4. IEEE, pp 2424–2429
– reference: KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res1986519084680110.1177/027836498600500106
– reference: CastilloOTrujilloLMelinPMultiple objective genetic algorithms for path-planning optimization in autonomous mobile robotsSoft Comput: A Fusion Found Method Appl2007113269279
– reference: Burchardt H, Saloman R (2006) Implementation of path planning using genetic algorithms on mobile robots. In: Proceedings of the World Congress on evolutionary computation (WCCI-2006), pp 1831–1836
– reference: SugiharaKSmithJGenetic algorithms for adaptive planning of path and trajectory of a mobile robot in 2D terrainsIEEE Trans Inf Syst1999821309317
– reference: GlasiusRKomodaAGielenSNeural network dynamics for path planning and obstacle avoidanceNeural Networks19958112513310.1016/0893-6080(94)E0045-M
– reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design optimization and control with applications to industrial problems. International Center for Numerical Methods in Engineering (CIMNE), Athens, Greece, pp 95–100
– reference: Al-SultanKSAliyuMDSA new potential field-based algorithm for path planningJ Intell Robot Syst201017326528210.1007/BF00339664
– reference: Xiao M, Michalewicz Z (2000) An evolutionary computation approach to robot planning and navigation. Soft Computing in Mechatronics, pp 117–128
– reference: BisseEBentounesMBoukasEKOptimal path generation for a simulated autonomous mobile robotAuton Robots199521112710.1007/BF00735436
– reference: LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge
– reference: PratiharDDebKGhoshAFuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robotsEng Optim19993211714210.1080/03052159908941294
– reference: Murrieta-CidRTovarBHutchinsonSA sampling-based motion planning approach to maintain visibility of unpredictable targetsAuton Robots200519328530010.1007/s10514-005-4052-0
– reference: OrioloGUliviGVendittelliMFuzzy maps: a new tool for mobile robot perception and planningJ Robot Syst199714317919710.1002/(SICI)1097-4563(199703)14:3<179::AID-ROB3>3.0.CO;2-O
– reference: Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
– reference: Connolly C, Burns J, Weiss R (1990) Path planning using laplace’s equation. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 2102–2106
– volume: 14
  start-page: 179
  issue: 3
  year: 1997
  ident: 964_CR26
  publication-title: J Robot Syst
  doi: 10.1002/(SICI)1097-4563(199703)14:3<179::AID-ROB3>3.0.CO;2-O
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 964_CR33
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– ident: 964_CR1
  doi: 10.1109/ROBIO.2011.6181426
– volume: 24
  start-page: 219
  issue: 3
  year: 1992
  ident: 964_CR20
  publication-title: ACM Comput Surveys (CSUR)
  doi: 10.1145/136035.136037
– volume: 17
  start-page: 265
  issue: 3
  year: 2010
  ident: 964_CR3
  publication-title: J Intell Robot Syst
  doi: 10.1007/BF00339664
– ident: 964_CR5
  doi: 10.1109/CEC.2006.1688529
– volume: 8
  start-page: 125
  issue: 1
  year: 1995
  ident: 964_CR19
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)E0045-M
– volume: 32
  start-page: 117
  year: 1999
  ident: 964_CR27
  publication-title: Eng Optim
  doi: 10.1080/03052159908941294
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 964_CR12
  publication-title: Complex Syst
– volume: 19
  start-page: 285
  issue: 3
  year: 2005
  ident: 964_CR25
  publication-title: Auton Robots
  doi: 10.1007/s10514-005-4052-0
– volume: 11
  start-page: 269
  issue: 3
  year: 2007
  ident: 964_CR7
  publication-title: Soft Comput: A Fusion Found Method Appl
  doi: 10.1007/s00500-006-0068-4
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 964_CR10
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00389-8
– ident: 964_CR11
– ident: 964_CR28
  doi: 10.1145/544741.544841
– ident: 964_CR34
– volume: 22
  start-page: 560
  issue: 10
  year: 1979
  ident: 964_CR24
  publication-title: Commun ACM
  doi: 10.1145/359156.359164
– volume: 120
  start-page: 162
  issue: 2
  year: 1998
  ident: 964_CR14
  publication-title: Trans ASME: J Mech Des
  doi: 10.1115/1.2826954
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 964_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 964_CR16
  doi: 10.1109/CCECE.2004.1345203
– ident: 964_CR23
  doi: 10.1017/CBO9780511546877
– volume: 43
  start-page: 1175
  issue: 11
  year: 2011
  ident: 964_CR15
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2010.548863
– ident: 964_CR30
– ident: 964_CR18
– volume: 16
  start-page: 263
  issue: 3
  year: 1997
  ident: 964_CR21
  publication-title: Int J Robot Res
  doi: 10.1177/027836499701600301
– volume: 17
  start-page: 223
  issue: 3
  year: 2010
  ident: 964_CR31
  publication-title: J Intell Robot Syst
  doi: 10.1007/BF00339662
– volume: 13
  start-page: 207
  issue: 3
  year: 2002
  ident: 964_CR17
  publication-title: Auton Robots
  doi: 10.1023/A:1020564024509
– volume: 5
  start-page: 90
  issue: 1
  year: 1986
  ident: 964_CR22
  publication-title: Int J Robot Res
  doi: 10.1177/027836498600500106
– volume: 2
  start-page: 11
  issue: 1
  year: 1995
  ident: 964_CR4
  publication-title: Auton Robots
  doi: 10.1007/BF00735436
– volume: 82
  start-page: 309
  issue: 1
  year: 1999
  ident: 964_CR29
  publication-title: IEEE Trans Inf Syst
– ident: 964_CR8
– volume: 9
  start-page: 27
  issue: 1
  year: 2000
  ident: 964_CR32
  publication-title: Auton Robots
  doi: 10.1023/A:1008920117364
– volume: 19
  start-page: 169
  issue: 2
  year: 1997
  ident: 964_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.574801
– volume: 6
  start-page: 48
  issue: 1
  year: 2005
  ident: 964_CR6
  publication-title: Int J Comput Syst Signals
– ident: 964_CR9
  doi: 10.1109/ROBOT.1990.126315
SSID ssj0021753
Score 2.3962057
Snippet A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1283
SubjectTerms Artificial Intelligence
Barriers
Computational Intelligence
Control
Elitism
Engineering
Genes
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple objective analysis
Optimization
Optimization algorithms
Optimization techniques
Path planning
Representations
Robotics
Safety
Smoothness
Soft computing
Sorting algorithms
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aPXixrlitkoMnJThrkjmJiMWDFA8qPQhD1oq0ndoZ_f2-TDMtCvbieZIQ5stbkrd8CJ1LxhNurSA2pQIuKAZESqaCMJNpY7gJbP2m-_LA-n0-GGSP_sGt9GmVjU6sFbUulHsjv4qykAdg3oPgevpBHGuUi656Co11tBFGoIRdUJaRxYXLd6EElwC8SDC9TVQzqJuIpq6m2iUmZDQh_KddWjqbv-Kjtdnptf-74R207R1OfDM_IbtozUz2ULshc8BetvfRa12KSwr5PleBuABlMoaZjrMYTz23EXZ58kNsXNJcWeFJMSG6cNk04LjisnAtCYYYzqQrjcRiNIQNVW_j8gA99-6ebu-Jp14gKg5pRQy1UikWaMUV4zTImNQWxFuBiddxJrTQoRaMCxFLGinDQ2rB1bEJpXCHk2l8iFqwBXOEsFWMmTSToXA1dVJKalisIgmOZJzoJOygoPnxufJ9yR09xihfdFSuscoBq9xhlfMOulhMmc6bcqwa3G3wyb18lvkSnA66bBBefv5zsePVi52graimy3DpvF3Uqmaf5hRtqi_AZHZWH85v2DnrZA
  priority: 102
  providerName: ProQuest
Title Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
URI https://link.springer.com/article/10.1007/s00500-012-0964-8
https://www.proquest.com/docview/2918055100
Volume 17
WOSCitedRecordID wos000320043100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4B4dAeCI8i0qbRHjhRreTn7vpYKqJKRVFES4QQkrXPAIIYxW5_f2cdOymIIsHFF69Xq5mdnW-8M98AHCouEuGcpC5lEgMUiyalUkm5zYy1wgau_qc7OeWjkbi4yMZNHXfZZru3V5L1Sb0sdvNUJT6JKqIIuxMq1qGTerIZH6L_nCyjrIZ6EnEAQkf0t-1V5nNTPHZGK4T55FK09jXD7ptWuQ1bDbQkXxd7YQfW7GwXum3bBtJY8S68_4eDcA-u6hJcWqjbxdFHCjxE7nEe36uYPDQ9jYjPj58S65PlyorMihk1hc-iQcBKysJTEUwJ7kVfEknk3bSY31TX9-UHOB-e_Pr2nTYtF6iOQ1ZRy5zSmgdGC80FQ_Eq49CsNbp2E2fSSBMayYWUsWKRtiJkDiGOSxjD2E2l8T5s4BLsARCnObdppkLpa-mUUszyWEcKAWScmCTsQdDKPtcNH7lvi3GXL5mUa1nmKMvcyzIXPThafvKwION4aXC_VWje2GWZR1koAgSJQdCDL60CV6__O9nHV43-BO-iumuGz-rtw0Y1_20_w6b-gyqaD6BzfDIanw1g_Qen-Bynl4N6C_8FdtrpFA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkutLzUhZb6ABeQhfOynUOFEFC16rLqoaAKIQU_F6F2szQLqH-K38hMNtlVK7W3HjgnthL7m5c9Mx_Ac6t0rmM0PBbSYIASUKRsYbgKpQ9BBxHbM93PQzUa6ePj8nAF_va1MJRW2evEVlH72tEZ-eu0TLRA8y7Em-lPTqxRdLvaU2jMYXEQzv9gyNbs7L_H_X2Rprsfjt7t8Y5VgLsskTMeZLTOKeGddkpLUSrrIyLXofXyWWm88Yk3ShuTWZm6oBMZ0YrHXEoMTyyxRKDKv5XnqSDGhMPiyyLA67peoguCXiua-v4WVbRNSwuq4aZEiFLmXF-0g0vn9tJ9bGvmdtf-twVah3udQ83eziXgPqyEyQNY68kqWKe7HsLXttSY1_bHXMWzGpXlKY4kTmY27bibGNUBjFmgpMBmxib1hPuasoXQMWdNTS0Xxgxljko_mTkZ4wLMvp82j-DTjfzjY1jFTwgbwKJTKhSlTQzVDFprZVCZSy06ylnu82QAot_oynV914n-46RadIxusVEhNirCRqUH8HIxZDpvOnLdy5s9HqpO_zTVEgwDeNUjavn4ysmeXD_ZNtzZO_o4rIb7o4OncDdtqUEodXkTVmdnv8IW3Ha_cX_OnrWCweDbTQPtHzEoSjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RQIgeCqQg0vLYAyeqVfzK7vqIaCMQKEK8xAHJ2mdolcRRbPr7O-vYgaKChHq2vVrt7Ox84535PoADxUUinJPUdZnEBMWiS6mupNymxlphA1f907095_2-uLtLL2qd06Kpdm-uJGc9DZ6laVx2JsZ15o1vnrbEF1RFFCF4QsUHWEowkfE1XZdXt_OMq6ahREyAMBJjb3Ot-a8h_g5MT2jzxQVpFXd6a_8943X4VENOcjTbIxuwYMctWGvkHEjt3S34-Iyb8DPcV625NFe_ZkciyfFwGeE4XsOYTGqtI-Lr5gfE-iK6oiTjfExN7qtrEMiSIvcUBQOCe9S3ShI5HOTTn-XDqNiEm96P6-MTWksxUB2HrKSWOaU1D4wWmgsWpFwZh-6uMeSbOJVGmtBILqSMFYu0FSFzCH1cwhjmdKobb8EiTsFuA3Gac9tNVSh9j51Silke60ghsIwTk4RtCBo7ZLrmKfdyGcNszrBcrWWGa5n5tcxEGw7nn0xmJB1vvbzTGDer_bXIojQUAYLHIGjDt8aYT49fHezLu97eh5WL773s_LR_9hVWo0pYwxf-7sBiOX20u7Csf6O1pnvVLv4DVbLxcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+path+planning+using+elitist+non-dominated+sorting+genetic+algorithms&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ahmed%2C+Faez&rft.au=Deb%2C+Kalyanmoy&rft.date=2013-07-01&rft.pub=Springer-Verlag&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=17&rft.issue=7&rft.spage=1283&rft.epage=1299&rft_id=info:doi/10.1007%2Fs00500-012-0964-8&rft.externalDocID=10_1007_s00500_012_0964_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon