Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start...
Uloženo v:
| Vydáno v: | Soft computing (Berlin, Germany) Ročník 17; číslo 7; s. 1283 - 1299 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.07.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A multi-objective vehicle path planning method has been proposed to optimize path length, path safety, and path smoothness using the elitist non-dominated sorting genetic algorithm—a well-known soft computing approach. Four different path representation schemes that begin their coding from the start point and move one grid at a time towards the destination point are proposed. Minimization of traveled distance and maximization of path safety are considered as objectives of this study while path smoothness is considered as a secondary objective. This study makes an extensive analysis of a number of issues related to the optimization of path planning task-handling of constraints associated with the problem, identifying an efficient path representation scheme, handling single versus multiple objectives, and evaluating the proposed algorithm on large-sized grids and having a dense set of obstacles. The study also compares the performance of the proposed algorithm with an existing GA-based approach. The evaluation of the proposed procedure against extreme conditions having a dense (as high as 91 %) placement of obstacles indicates its robustness and efficiency in solving complex path planning problems. The paper demonstrates the flexibility of evolutionary computing approaches in dealing with large-scale and multi-objective optimization problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-012-0964-8 |