Orthogonal incremental non-negative matrix factorization algorithm and its application in image classification
To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch...
Uloženo v:
| Vydáno v: | Computational & applied mathematics Ročník 39; číslo 2 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.05.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 2238-3603, 1807-0302 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch update in the process of incremental learning, and its iterative formulae are obtained using the gradient on the Stiefel manifold. The experiments on image classification show that the proposed method achieves much better sparseness and orthogonality, while retaining time efficiency of incremental learning. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2238-3603 1807-0302 |
| DOI: | 10.1007/s40314-020-1091-2 |