Orthogonal incremental non-negative matrix factorization algorithm and its application in image classification

To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational & applied mathematics Ročník 39; číslo 2
Hlavní autoři: Ge, Shaodi, Luo, Liuhong, Li, Hongjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.05.2020
Springer Nature B.V
Témata:
ISSN:2238-3603, 1807-0302
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch update in the process of incremental learning, and its iterative formulae are obtained using the gradient on the Stiefel manifold. The experiments on image classification show that the proposed method achieves much better sparseness and orthogonality, while retaining time efficiency of incremental learning.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-020-1091-2