Realizability and inscribability for simplicial polytopes via nonlinear optimization
We show that nonlinear optimization techniques can successfully be applied to realize and to inscribe matroid polytopes and simplicial spheres. In order to show non-realizability of simplicial spheres, we extend the method of finding biquadratic final polynomials for matroid polytopes to partial mat...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 166; číslo 1-2; s. 273 - 295 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that nonlinear optimization techniques can successfully be applied to realize and to inscribe matroid polytopes and simplicial spheres. In order to show non-realizability of simplicial spheres, we extend the method of finding biquadratic final polynomials for matroid polytopes to
partial
matroid polytopes. Combining these two methods we obtain a complete classification of neighborly polytopes of dimension 4, 6 and 7 with 11 vertices, of neighborly 5-polytopes with 10 vertices, as well as a complete classification of simplicial 3-spheres with 10 vertices into polytopal and non-polytopal spheres. Surprisingly many of the realizable polytopes are also inscribable. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-017-1120-0 |