Realizability and inscribability for simplicial polytopes via nonlinear optimization

We show that nonlinear optimization techniques can successfully be applied to realize and to inscribe matroid polytopes and simplicial spheres. In order to show non-realizability of simplicial spheres, we extend the method of finding biquadratic final polynomials for matroid polytopes to partial mat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 166; číslo 1-2; s. 273 - 295
Hlavný autor: Firsching, Moritz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2017
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We show that nonlinear optimization techniques can successfully be applied to realize and to inscribe matroid polytopes and simplicial spheres. In order to show non-realizability of simplicial spheres, we extend the method of finding biquadratic final polynomials for matroid polytopes to partial matroid polytopes. Combining these two methods we obtain a complete classification of neighborly polytopes of dimension 4, 6 and 7 with 11 vertices, of neighborly 5-polytopes with 10 vertices, as well as a complete classification of simplicial 3-spheres with 10 vertices into polytopal and non-polytopal spheres. Surprisingly many of the realizable polytopes are also inscribable.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-017-1120-0