A class of conserved surface layer integrals for causal variational principles
In the theory of causal fermion systems, the physical equations are obtained as the Euler–Lagrange equations of a causal variational principle. Studying families of critical measures of causal variational principles, a class of conserved surface layer integrals is found and analyzed.
Uložené v:
| Vydané v: | Calculus of variations and partial differential equations Ročník 58; číslo 1; s. 1 - 34 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In the theory of causal fermion systems, the physical equations are obtained as the Euler–Lagrange equations of a causal variational principle. Studying families of critical measures of causal variational principles, a class of conserved surface layer integrals is found and analyzed. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0944-2669 1432-0835 |
| DOI: | 10.1007/s00526-018-1469-9 |