Scalable non-deterministic clustering-based k-anonymization for rich networks

In this paper, we tackle the problem of graph anonymization in the context of privacy-preserving social network mining. We present a greedy and non-deterministic algorithm to achieve k -anonymity on labeled and undirected networks. Our work aims to create a scalable algorithm for real-world big netw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information security Ročník 18; číslo 2; s. 219 - 238
Hlavní autoři: Ros-Martín, Miguel, Salas, Julián, Casas-Roma, Jordi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2019
Springer Nature B.V
Témata:
ISSN:1615-5262, 1615-5270
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we tackle the problem of graph anonymization in the context of privacy-preserving social network mining. We present a greedy and non-deterministic algorithm to achieve k -anonymity on labeled and undirected networks. Our work aims to create a scalable algorithm for real-world big networks, which runs in parallel and uses biased randomization for improving the quality of the solutions. We propose new metrics that consider the utility of the clusters from a recommender system point of view. We compare our approach to SaNGreeA, a well-known state-of-the-art algorithm for k -anonymity generalization. Finally, we have performed scalability tests, with up to 160 machines within the Hadoop framework, for anonymizing a real-world dataset with around 830 K nodes and 63 M relationships, demonstrating our method’s utility and practical applicability.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-5262
1615-5270
DOI:10.1007/s10207-018-0409-1