Asymptotic Analysis of Eigenvalues for Concentrated Masses Approaching One Another

A spectral Dirichlet problem in a three-dimensional domain with several identical concentrated heavy masses (large density perturbations on small sets) is studied. Asymptotics of its eigenvalues and eigenfunctions are constructed depending on two parameters: a small one characterizing the size and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics Jg. 64; H. 10; S. 2285 - 2304
1. Verfasser: Nazarov, S. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.10.2024
Springer Nature B.V
Schlagworte:
ISSN:0965-5425, 1555-6662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spectral Dirichlet problem in a three-dimensional domain with several identical concentrated heavy masses (large density perturbations on small sets) is studied. Asymptotics of its eigenvalues and eigenfunctions are constructed depending on two parameters: a small one characterizing the size and the density of the inclusions and a timelike parameter describing their approach to the origin (or to a point on the boundary of the domain). The basic novelty is the construction of two-scale asymptotic expansions and the derivation of uniform estimates for asymptotic remainders.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542524701276