Asymptotic Analysis of Eigenvalues for Concentrated Masses Approaching One Another

A spectral Dirichlet problem in a three-dimensional domain with several identical concentrated heavy masses (large density perturbations on small sets) is studied. Asymptotics of its eigenvalues and eigenfunctions are constructed depending on two parameters: a small one characterizing the size and t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 64; číslo 10; s. 2285 - 2304
Hlavní autor: Nazarov, S. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.10.2024
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A spectral Dirichlet problem in a three-dimensional domain with several identical concentrated heavy masses (large density perturbations on small sets) is studied. Asymptotics of its eigenvalues and eigenfunctions are constructed depending on two parameters: a small one characterizing the size and the density of the inclusions and a timelike parameter describing their approach to the origin (or to a point on the boundary of the domain). The basic novelty is the construction of two-scale asymptotic expansions and the derivation of uniform estimates for asymptotic remainders.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542524701276