Polynomial-time approximation algorithms for the antiferromagnetic Ising model on line graphs

We present a polynomial-time Markov chain Monte Carlo algorithm for estimating the partition function of the antiferromagnetic Ising model on any line graph. The analysis of the algorithm exploits the ‘winding’ technology devised by McQuillan [CoRR abs/1301.2880 (2013)] and developed by Huang, Lu an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing Jg. 30; H. 6; S. 905 - 921
Hauptverfasser: Dyer, Martin, Heinrich, Marc, Jerrum, Mark, Müller, Haiko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Cambridge University Press 01.11.2021
Schlagworte:
ISSN:0963-5483, 1469-2163
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a polynomial-time Markov chain Monte Carlo algorithm for estimating the partition function of the antiferromagnetic Ising model on any line graph. The analysis of the algorithm exploits the ‘winding’ technology devised by McQuillan [CoRR abs/1301.2880 (2013)] and developed by Huang, Lu and Zhang [Proc. 27th Symp. on Disc. Algorithms (SODA16), 514–527]. We show that exact computation of the partition function is #P-hard, even for line graphs, indicating that an approximation algorithm is the best that can be expected. We also show that Glauber dynamics for the Ising model is rapidly mixing on line graphs, an example being the kagome lattice.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548321000080