Nonerasing, Counting, and Majority over the Linear Time Hierarchy

In this paper, we investigate several extensions of the linear time hierarchy (denoted by LTH). We first prove that it is not necessary to erase the oracle tape between two successive oracle calls, thereby lifting a common restriction on LTH machines. We also define a natural counting extension of L...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information and computation Ročník 174; číslo 2; s. 132 - 142
Hlavní autoři: Durand, Arnaud, More, Malika
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.05.2002
Elsevier
Témata:
ISSN:0890-5401, 1090-2651
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate several extensions of the linear time hierarchy (denoted by LTH). We first prove that it is not necessary to erase the oracle tape between two successive oracle calls, thereby lifting a common restriction on LTH machines. We also define a natural counting extension of LTH and show that it corresponds to a robust notion of counting bounded arithmetic predicates. Finally, we show that the computational power of the majority operator is equivalent to that of the exact counting operator in both contexts.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.2001.3084