Nonerasing, Counting, and Majority over the Linear Time Hierarchy

In this paper, we investigate several extensions of the linear time hierarchy (denoted by LTH). We first prove that it is not necessary to erase the oracle tape between two successive oracle calls, thereby lifting a common restriction on LTH machines. We also define a natural counting extension of L...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information and computation Ročník 174; číslo 2; s. 132 - 142
Hlavní autori: Durand, Arnaud, More, Malika
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Diego, CA Elsevier Inc 01.05.2002
Elsevier
Predmet:
ISSN:0890-5401, 1090-2651
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we investigate several extensions of the linear time hierarchy (denoted by LTH). We first prove that it is not necessary to erase the oracle tape between two successive oracle calls, thereby lifting a common restriction on LTH machines. We also define a natural counting extension of LTH and show that it corresponds to a robust notion of counting bounded arithmetic predicates. Finally, we show that the computational power of the majority operator is equivalent to that of the exact counting operator in both contexts.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.2001.3084