POINT-BASED SUFFICIENT CONDITIONS FOR SHARP SOLUTIONS IN NONSMOOTH OPTIMIZATION
We present some sufficient optimality conditions for sharp and for isolated solutions of constrained scalar and set-valued nonsmooth optimization problems in terms of several types of subgradients and coderivatives. We make use of Shapiro properties for sets and the employment of different kinds of...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 93; číslo 2; s. 451 - 470 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present some sufficient optimality conditions for sharp and for isolated solutions of constrained scalar and set-valued nonsmooth optimization problems in terms of several types of subgradients and coderivatives. We make use of Shapiro properties for sets and the employment of different kinds of generalized differentiation objects allows to describe several degrees of sharpness. The main assertions generalize related results from literature. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-025-01550-0 |