Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces
In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59 , 301–323 2012 ) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions ar...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 77; číslo 3; s. 741 - 761 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor.
59
, 301–323
2012
) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions are Lipschitz-type continuous and pseudo-monotone with respect to their solution sets. By using extragradient method combining with cutting techniques, we obtain algorithms for these problems without using any product space. Under certain conditions on parameters, the iteration sequences generated by the proposed algorithms are proved to be weakly and strongly convergent to a solution of MSSEP. An application to multiple set split variational inequality problems and a numerical example and preliminary computational results are also provided. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-017-0338-5 |