Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces

In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59 , 301–323 2012 ) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 77; číslo 3; s. 741 - 761
Hlavní autoři: Kim, Do Sang, Van Dinh, Bui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2018
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59 , 301–323 2012 ) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions are Lipschitz-type continuous and pseudo-monotone with respect to their solution sets. By using extragradient method combining with cutting techniques, we obtain algorithms for these problems without using any product space. Under certain conditions on parameters, the iteration sequences generated by the proposed algorithms are proved to be weakly and strongly convergent to a solution of MSSEP. An application to multiple set split variational inequality problems and a numerical example and preliminary computational results are also provided.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0338-5