Splitting extrapolation algorithms for solving the boundary integral equations of anisotropic Darcy’s equation on polygons by mechanical quadrature methods

In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ 2 . Using the collectively compact theory, we construct numerical solutions which c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 62; číslo 1; s. 27 - 43
Hlavní autori: Luo, Xin, Huang, Jin, Wang, Chuan-Long
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.01.2013
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ 2 . Using the collectively compact theory, we construct numerical solutions which converge with the order , where is the mesh size. In addition, An a posteriori asymptotic error representation is derived by splitting extrapolation methods in order to construct self-adaptive algorithms, and the convergence rate can be achieved after using the splitting extrapolation methods once. Finally, the numerical examples show the efficiency of our methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-012-9563-0