Splitting extrapolation algorithms for solving the boundary integral equations of anisotropic Darcy’s equation on polygons by mechanical quadrature methods
In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ 2 . Using the collectively compact theory, we construct numerical solutions which c...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 62; číslo 1; s. 27 - 43 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.01.2013
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ
2
. Using the collectively compact theory, we construct numerical solutions which converge with the order
, where
is the mesh size. In addition, An a posteriori asymptotic error representation is derived by splitting extrapolation methods in order to construct self-adaptive algorithms, and the convergence rate
can be achieved after using the splitting extrapolation methods once. Finally, the numerical examples show the efficiency of our methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-012-9563-0 |