Deep learning for determining a near-optimal topological design without any iteration

In this study, we propose a novel deep learning-based method to predict an optimized structure for a given boundary condition and optimization setting without using any iterative scheme. For this purpose, first, using open-source topology optimization code, datasets of the optimized structures paire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization Jg. 59; H. 3; S. 787 - 799
Hauptverfasser: Yu, Yonggyun, Hur, Taeil, Jung, Jaeho, Jang, In Gwun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2019
Springer Nature B.V
Schlagworte:
ISSN:1615-147X, 1615-1488
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we propose a novel deep learning-based method to predict an optimized structure for a given boundary condition and optimization setting without using any iterative scheme. For this purpose, first, using open-source topology optimization code, datasets of the optimized structures paired with the corresponding information on boundary conditions and optimization settings are generated at low (32 × 32) and high (128 × 128) resolutions. To construct the artificial neural network for the proposed method, a convolutional neural network (CNN)-based encoder and decoder network is trained using the training dataset generated at low resolution. Then, as a two-stage refinement, the conditional generative adversarial network (cGAN) is trained with the optimized structures paired at both low and high resolutions and is connected to the trained CNN-based encoder and decoder network. The performance evaluation results of the integrated network demonstrate that the proposed method can determine a near-optimal structure in terms of pixel values and compliance with negligible computational time.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-018-2101-5