Causal inference and Bayesian network structure learning from nominal data

This study investigates a discrete causal method for nominal data (DCMND) which is one of the important issues of causal inference. It is utilized to learn the causal Bayesian network to reflect the interconnections between variables in our paper. This article also proposes a Bayesian network constr...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 49; no. 1; pp. 253 - 264
Main Authors: Luo, Guiming, Zhao, Boxu, Du, Shiyuan
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2019
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates a discrete causal method for nominal data (DCMND) which is one of the important issues of causal inference. It is utilized to learn the causal Bayesian network to reflect the interconnections between variables in our paper. This article also proposes a Bayesian network construction algorithm based on discrete causal inference (BDCI) and an extended BDCI Bayesian network construction algorithm based on DCMND. Furthermore, the paper studies the alarm data of mobile communication system in practice. The results suggest that decision criterion based our method is effective in causal inference and the Bayesian network constructed by our method has better classification accuracy compared to other methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-018-1274-3