Infinite-dimensional port-Hamiltonian systems: a system node approach

We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005)...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics of control, signals, and systems Vol. 37; no. 3; pp. 573 - 620
Main Authors: Philipp, Friedrich M., Reis, Timo, Schaller, Manuel
Format: Journal Article
Language:English
Published: London Springer London 01.09.2025
Springer Nature B.V
Subjects:
ISSN:0932-4194, 1435-568X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples.
AbstractList We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples.
We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples.
Author Philipp, Friedrich M.
Reis, Timo
Schaller, Manuel
Author_xml – sequence: 1
  givenname: Friedrich M.
  surname: Philipp
  fullname: Philipp, Friedrich M.
  organization: Optimization-Based Control Group, Technische Universität Ilmenau
– sequence: 2
  givenname: Timo
  surname: Reis
  fullname: Reis, Timo
  organization: Systems Theory and Partial Differential Equations Group, Technische Universität Ilmenau
– sequence: 3
  givenname: Manuel
  surname: Schaller
  fullname: Schaller, Manuel
  email: manuel.schaller@math.tu-chemnitz.de
  organization: Faculty of Mathematics, Chemnitz University of Technology
BookMark eNp9kLtOwzAUhi0EEm3hBZgiMRvO8TVhQ1WhlSqxgMRmOYkDqRo72OnQtyeQSmxM5x_-y9E3J-c-eEfIDcIdAuj7BCCKnAKTdFTIKJyRGQouqVT5-zmZQcEZFViISzJPaQcAqDTOyGrjm9a3g6N12zmf2uDtPutDHOjadu1-CL61PkvHNLguPWT2JDMfapfZvo_BVp9X5KKx--SuT3dB3p5Wr8s13b48b5aPW1pxVAPVolQMa1flRYmsLpHLomHcFlpIyYBjrnMnVVUKhdrWlSprXgrZ2ILXaLHiC3I79Y6zXweXBrMLhzh-nAxnQnOZK5Cji02uKoaUomtMH9vOxqNBMD-4zITLjLjMLy4DY4hPoTSa_YeLf9X_pL4Bd5du1w
Cites_doi 10.1090/surv/015
10.1016/S0022-247X(02)00455-9
10.1137/20M1371166
10.1137/15M1024901
10.1007/978-3-030-36714-5
10.1137/110831726
10.1007/978-3-030-35898-3_4
10.1007/978-3-7643-8994-9
10.1007/978-3-0348-0399-1
10.1137/1.9781611972597
10.1090/S0033-569X-06-00994-7
10.1109/LCSYS.2019.2916814
10.1007/978-3-319-32062-5
10.1016/j.automatica.2013.11.035
10.1109/CDC40024.2019.9030180
10.1017/CBO9780511543197
10.1016/j.automatica.2019.02.010
10.1007/s00498-018-0223-3
10.1137/20M1366216
10.1137/040611677
10.1137/120869444
10.1007/s00498-023-00349-2
10.1016/j.sysconle.2023.105564
10.1561/2600000002
10.1137/18M1181304
10.3934/eect.2020098
10.1016/S0393-0440(01)00083-3
10.3934/eect.2014.3.207
10.1016/j.ifacol.2021.11.078
10.1007/s00020-024-02780-9
10.1007/s004980200012
10.1016/j.ifacol.2021.11.082
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00498-025-00412-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1435-568X
EndPage 620
ExternalDocumentID 10_1007_s00498_025_00412_0
GrantInformation_xml – fundername: Carl-Zeiss-Stiftung
  grantid: DeepTurb-Learning in and from turbulence
  funderid: http://dx.doi.org/10.13039/100007569
– fundername: Bundesministerium für Bildung und Forschung
  grantid: ThinKI
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Technische Universität Chemnitz (3137)
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~8M
~A9
~EX
AAYXX
AFFHD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-74b621dec89b12db1359f23a974552031878e56cb4617adc6bd3b45fa93d1a1c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001501387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0932-4194
IngestDate Wed Nov 05 06:13:02 EST 2025
Sat Nov 29 07:34:46 EST 2025
Sat Sep 06 10:14:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Boundary control
Infinite-dimensional systems
System nodes
Port-Hamiltonian systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-74b621dec89b12db1359f23a974552031878e56cb4617adc6bd3b45fa93d1a1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00498-025-00412-0
PQID 3247358605
PQPubID 29789
PageCount 48
ParticipantIDs proquest_journals_3247358605
crossref_primary_10_1007_s00498_025_00412_0
springer_journals_10_1007_s00498_025_00412_0
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle MCSS
PublicationTitle Mathematics of control, signals, and systems
PublicationTitleAbbrev Math. Control Signals Syst
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References B Augner (412_CR39) 2016
H Gernandt (412_CR3) 2021; 42
MR Opmeer (412_CR21) 2019; 57
A Buffa (412_CR43) 2002; 276
C Beattie (412_CR1) 2018; 30
JA Villegas (412_CR11) 2007
412_CR17
E Zeidler (412_CR31) 2012
BDO Anderson (412_CR34) 1973
B Jacob (412_CR14) 2019; 3
M Tucsnak (412_CR24) 2009
K-J Engel (412_CR33) 2000
412_CR30
M Schöberl (412_CR8) 2014; 50
OJ Staffans (412_CR18) 2005
FL Schwenninger (412_CR37) 2020
AJ van der Schaft (412_CR6) 2021; 54
P Grisvard (412_CR35) 1985
PG Ciarlet (412_CR42) 2013
B Jacob (412_CR15) 2021; 59
RA Adams (412_CR22) 2003
412_CR29
G Weiss (412_CR44) 2002; 51
Y Le Gorrec (412_CR9) 2005; 44
T Reis (412_CR10) 2021; 54
AJ van der Schaft (412_CR4) 2023; 177
MR Opmeer (412_CR20) 2014; 52
B Jacob (412_CR13) 2019; 103
J Behrndt (412_CR27) 2020
T Kato (412_CR28) 2013
J Malinen (412_CR26) 2006; 64
N Skrepek (412_CR16) 2021; 10
B Jacob (412_CR12) 2012
B Augner (412_CR40) 2014; 3
412_CR41
V Mehrmann (412_CR5) 2023; 35
B Augner (412_CR38) 2019; 57
C Johnson (412_CR32) 1987
J Diestel (412_CR23) 1977
OJ Staffans (412_CR19) 2022; 15
AJ van der Schaft (412_CR7) 2002; 42
L Tartar (412_CR36) 2007
AJ van der Schaft (412_CR2) 2014; 1
HW Alt (412_CR25) 2016
References_xml – volume-title: Vector measures
  year: 1977
  ident: 412_CR23
  doi: 10.1090/surv/015
– volume-title: Applied functional analysis, applications to mathematical physics
  year: 2012
  ident: 412_CR31
– volume: 276
  start-page: 845
  year: 2002
  ident: 412_CR43
  publication-title: J Math Anal Appl
  doi: 10.1016/S0022-247X(02)00455-9
– volume-title: Perturbation theory for linear operators
  year: 2013
  ident: 412_CR28
– volume-title: Numerical solution of partial differential equations by the finite element method
  year: 1987
  ident: 412_CR32
– volume: 42
  start-page: 1011
  issue: 2
  year: 2021
  ident: 412_CR3
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/20M1371166
– volume-title: An application-oriented introduction
  year: 2016
  ident: 412_CR25
– volume: 57
  start-page: 1818
  issue: 3
  year: 2019
  ident: 412_CR38
  publication-title: SIAM J Control Optim
  doi: 10.1137/15M1024901
– volume-title: Boundary value problems, Weyl functions, and differential operators
  year: 2020
  ident: 412_CR27
  doi: 10.1007/978-3-030-36714-5
– volume-title: Stabilisation of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback
  year: 2016
  ident: 412_CR39
– volume-title: An introduction to Sobolev spaces and interpolation spaces
  year: 2007
  ident: 412_CR36
– volume-title: Sobolev spaces
  year: 2003
  ident: 412_CR22
– volume: 52
  start-page: 1958
  issue: 3
  year: 2014
  ident: 412_CR20
  publication-title: SIAM J Control Optim
  doi: 10.1137/110831726
– start-page: 83
  volume-title: Control theory of infinite-dimensional systems
  year: 2020
  ident: 412_CR37
  doi: 10.1007/978-3-030-35898-3_4
– volume-title: Observation and control for operator semigroups
  year: 2009
  ident: 412_CR24
  doi: 10.1007/978-3-7643-8994-9
– volume-title: Linear port-Hamiltonian systems on infinite-dimensional spaces
  year: 2012
  ident: 412_CR12
  doi: 10.1007/978-3-0348-0399-1
– volume-title: Linear and nonlinear functional analysis with applications
  year: 2013
  ident: 412_CR42
  doi: 10.1137/1.9781611972597
– volume: 64
  start-page: 61
  issue: 1
  year: 2006
  ident: 412_CR26
  publication-title: Q Appl Math
  doi: 10.1090/S0033-569X-06-00994-7
– volume: 3
  start-page: 661
  issue: 3
  year: 2019
  ident: 412_CR14
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2019.2916814
– ident: 412_CR41
  doi: 10.1007/978-3-319-32062-5
– volume: 50
  start-page: 607
  issue: 2
  year: 2014
  ident: 412_CR8
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.11.035
– volume-title: A port-Hamiltonian approach to distributed parameter systems
  year: 2007
  ident: 412_CR11
– ident: 412_CR17
  doi: 10.1109/CDC40024.2019.9030180
– volume-title: Well-posed linear systems. Encyclopedia of mathematics and its applications
  year: 2005
  ident: 412_CR18
  doi: 10.1017/CBO9780511543197
– volume: 103
  start-page: 310
  year: 2019
  ident: 412_CR13
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.02.010
– volume: 30
  start-page: 17
  issue: 4
  year: 2018
  ident: 412_CR1
  publication-title: Math Control Signals Syst
  doi: 10.1007/s00498-018-0223-3
– volume-title: Network analysis and synthesis
  year: 1973
  ident: 412_CR34
– volume: 59
  start-page: 4646
  issue: 6
  year: 2021
  ident: 412_CR15
  publication-title: SIAM J Control Optim
  doi: 10.1137/20M1366216
– volume-title: Elliptic problems in nonsmooth domains
  year: 1985
  ident: 412_CR35
– volume: 44
  start-page: 1864
  issue: 5
  year: 2005
  ident: 412_CR9
  publication-title: SIAM J Control Optim
  doi: 10.1137/040611677
– volume: 51
  start-page: 3722
  issue: 5
  year: 2002
  ident: 412_CR44
  publication-title: SIAM J Control Optim
  doi: 10.1137/120869444
– volume: 35
  start-page: 541
  issue: 3
  year: 2023
  ident: 412_CR5
  publication-title: Math Control Signals Syst
  doi: 10.1007/s00498-023-00349-2
– volume: 177
  year: 2023
  ident: 412_CR4
  publication-title: Syst Control Lett
  doi: 10.1016/j.sysconle.2023.105564
– volume: 1
  start-page: 173
  issue: 2–3
  year: 2014
  ident: 412_CR2
  publication-title: Found Trends Syst Control
  doi: 10.1561/2600000002
– volume: 57
  start-page: 1985
  issue: 3
  year: 2019
  ident: 412_CR21
  publication-title: SIAM J Control Optim
  doi: 10.1137/18M1181304
– volume: 10
  start-page: 965
  issue: 4
  year: 2021
  ident: 412_CR16
  publication-title: Evol Equ Control Theory
  doi: 10.3934/eect.2020098
– volume: 42
  start-page: 166
  issue: 1–2
  year: 2002
  ident: 412_CR7
  publication-title: J Geom Phys
  doi: 10.1016/S0393-0440(01)00083-3
– volume: 3
  start-page: 207
  issue: 2
  year: 2014
  ident: 412_CR40
  publication-title: Evol Equ Control Theory
  doi: 10.3934/eect.2014.3.207
– volume: 54
  start-page: 198
  issue: 19
  year: 2021
  ident: 412_CR6
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.11.078
– ident: 412_CR29
  doi: 10.1007/s00020-024-02780-9
– ident: 412_CR30
– volume: 15
  start-page: 291
  issue: 4
  year: 2022
  ident: 412_CR19
  publication-title: Math Control Signals Syst
  doi: 10.1007/s004980200012
– volume-title: One-parameter semigroups for linear evolution equations
  year: 2000
  ident: 412_CR33
– volume: 54
  start-page: 223
  issue: 19
  year: 2021
  ident: 412_CR10
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.11.082
SSID ssj0001671
Score 2.3932788
Snippet We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 573
SubjectTerms Communications Engineering
Control
Energy
Hamiltonian functions
Hilbert space
Hyperbolic systems
Linear systems
Mathematics
Mathematics and Statistics
Mechatronics
Networks
Ordinary differential equations
Original Article
Partial differential equations
Robotics
System theory
Systems Theory
Title Infinite-dimensional port-Hamiltonian systems: a system node approach
URI https://link.springer.com/article/10.1007/s00498-025-00412-0
https://www.proquest.com/docview/3247358605
Volume 37
WOSCitedRecordID wos001501387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1435-568X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001671
  issn: 0932-4194
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBN6JQUAY2sFS_HTaEWpWBCvFSt8ivSF3Sqin8fmznUUAwwJYokRWdz77vy_m-A-AiVVw4JDjUQQaAIp1DyS2HuSLMMCuETFVsNiHGYzmZpA91UVjZnHZvUpJxp26L3QKYlTC0X40iUdAT9XUf7mRo2PD49Nruv4hHmuWpOg45TlqXyvw8xtdwtMKY39KiMdoMd_73nbtgu0aXyU3lDntgzRX7YOuT5qC_u2-FWssDMLgr8mmAndAGmf9KoiMJmByOwq8Pjwy9_ySV3nN5naj6Milm1iWNIPkheBkOnm9HsO6sAA1BfAkF1Rwj64xMNcJWI8LSHBPlyQVjOKxzIR3jRlMPcJQ1XFuiKctVSixSyJAj0ClmhTsGifZ8BSlLcmww5VhIrrR0uI81pUpp2gWXjYGzeSWgkbVSydFUmTdVFk2V9bug18xBVi-mMvOYTxAmPfHqgqvG5qvHv4928rfXT8EmjtMWTpD1QGe5eHNnYMO8L6fl4jw62Qc8K8pi
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ignrwW5xO7cGbBpaPJqk3kY0NtyE6ZbeSr8IunazTv98kbTcVPeitpSWUl5e8368v7_cAuEwk4xZxBpWXAaBIZVAww2AmSaxjw7lIZGg2wYdDMR4nD1VRWFGfdq9TkmGnXhS7eTAroG-_GkSioCPqa9RFLK-Y__j0sth_EQs0y1F17HOctCqV-XmMr-FoiTG_pUVDtOns_O87d8F2hS6j29Id9sCKzffB1ifNQXc3WAi1Fgeg3cuziYed0HiZ_1KiI_KYHHb9rw-HDJ3_RKXec3ETyeoyyqfGRrUg-SF47rRHd11YdVaAmiA2h5wqhpGxWiQKYaMQiZMME-nIRRxjv865sDHTijqAI41myhBF40wmxCCJNDkCq_k0t8cgUo6vIGlIhjWmDHPBpBIWt7CiVEpFG-CqNnD6WgpopAup5GCq1JkqDaZKWw3QrOcgrRZTkTrMx0ksHPFqgOva5svHv4928rfXL8BGdzTop_3e8P4UbOIwhf40WROszmdv9gys6_f5pJidB4f7AMJ9zUY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iInrwW5xO7cGbhi0fTVJvohsb6hj4wW4laVLYpRtr9e83Sdttih7EW0tDKC8vze_X997vAXAZScYN4gwqJwNAkUqhYJrBVJIwCTXnIpK-2QQfDMRoFA2Xqvh9tnsdkixrGpxKU1a0pjptzQvfHLAV0LVi9YJR0JL2NeoS6R1ff36bf4sR85TL0nbs4p20Kpv5eY6vR9MCb34LkfqTp7vz_3feBdsV6gxuSzfZAysm2wdbS1qE9u5pLuCaH4BOP0vHDo5C7eT_S-mOwGF12HO_RCxitH4VlDrQ-U0gq8sgm2gT1ELlh-C123m568Gq4wJMCGIF5FQxjLRJRKQQ1gqRMEoxkZZ0hCF2-58LE7JEUQt8pE6Y0kTRMJUR0UiihByB1WySmWMQKMtjkNQkxQmmDHPBpBIGt7GiVEpFG-CqNnY8LYU14rmEsjdVbE0Ve1PF7QZo1usRV5ssjy0W5CQUlpA1wHVt_8Xj32c7-dvwC7AxvO_Gj_3BwynYxH4FXZJZE6wWs3dzBtaTj2Kcz869730CSGLWKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite-dimensional+port-Hamiltonian+systems%3A+a+system+node+approach&rft.jtitle=Mathematics+of+control%2C+signals%2C+and+systems&rft.au=Philipp%2C+Friedrich+M&rft.au=Reis%2C+Timo&rft.au=Schaller%2C+Manuel&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-4194&rft.eissn=1435-568X&rft.volume=37&rft.issue=3&rft.spage=573&rft.epage=620&rft_id=info:doi/10.1007%2Fs00498-025-00412-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-4194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-4194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-4194&client=summon