On minimizing difference of a SOS-convex polynomial and a support function over a SOS-concave matrix polynomial constraint

In this paper, we establish tractable sum of squares characterizations of the containment of a convex set, defined by a SOS-concave matrix inequality, in a non-convex set, defined by difference of a SOS-convex polynomial and a support function, with Slater’s condition. Using our set containment char...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 169; no. 1; pp. 177 - 198
Main Authors: Lee, Jae Hyoung, Lee, Gue Myung
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2018
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we establish tractable sum of squares characterizations of the containment of a convex set, defined by a SOS-concave matrix inequality, in a non-convex set, defined by difference of a SOS-convex polynomial and a support function, with Slater’s condition. Using our set containment characterization, we derive a zero duality gap result for a DC optimization problem with a SOS-convex polynomial and a support function, its sum of squares polynomial relaxation dual problem, the semidefinite representation of this dual problem, and the dual problem of the semidefinite programs. Also, we present the relations of their solutions. Finally, through a simple numerical example, we illustrate our results. Particularly, in this example we find the optimal solution of the original problem by calculating the optimal solution of its associated semidefinite problem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-017-1210-z