MASS-CSP: mining with answer set solving for contrast sequential pattern mining

In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying signific...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 114; číslo 11; s. 235
Hlavní autoři: Sterlicchio, Gioacchino, Lisi, Francesca Alessandra
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2025
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying significant differences in frequent sequences relative to specific classes, leading to the concept of a contrast sequential pattern. The article describes how MASS-CSP addresses the CSPM task and related extensions-mining closed, maximal and constrained patterns. Evaluation aims at comparing the basic version of MASS-CSP against the extended versions as regards the size of output and time-memory requirements.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-025-06876-0