MASS-CSP: mining with answer set solving for contrast sequential pattern mining

In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying signific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 114; H. 11; S. 235
Hauptverfasser: Sterlicchio, Gioacchino, Lisi, Francesca Alessandra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2025
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying significant differences in frequent sequences relative to specific classes, leading to the concept of a contrast sequential pattern. The article describes how MASS-CSP addresses the CSPM task and related extensions-mining closed, maximal and constrained patterns. Evaluation aims at comparing the basic version of MASS-CSP against the extended versions as regards the size of output and time-memory requirements.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-025-06876-0