MASS-CSP: mining with answer set solving for contrast sequential pattern mining

In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying signific...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 114; no. 11; p. 235
Main Authors: Sterlicchio, Gioacchino, Lisi, Francesca Alessandra
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2025
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying significant differences in frequent sequences relative to specific classes, leading to the concept of a contrast sequential pattern. The article describes how MASS-CSP addresses the CSPM task and related extensions-mining closed, maximal and constrained patterns. Evaluation aims at comparing the basic version of MASS-CSP against the extended versions as regards the size of output and time-memory requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-025-06876-0