MASS-CSP: mining with answer set solving for contrast sequential pattern mining
In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying signific...
Saved in:
| Published in: | Machine learning Vol. 114; no. 11; p. 235 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we present MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns), a declarative approach to the Contrast Sequential Pattern Mining (CSPM) task, which is based on the logic-based framework of Answer Set Programming (ASP). The CSPM task focuses on identifying significant differences in frequent sequences relative to specific classes, leading to the concept of a contrast sequential pattern. The article describes how MASS-CSP addresses the CSPM task and related extensions-mining closed, maximal and constrained patterns. Evaluation aims at comparing the basic version of MASS-CSP against the extended versions as regards the size of output and time-memory requirements. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-6125 1573-0565 |
| DOI: | 10.1007/s10994-025-06876-0 |