A Numerical Study of Eigenvalues and Eigenfunctions of Fractional Sturm-Liouville Problems via Laplace Transform

In this paper, we consider a class of fractional Sturm-Liouville problems, in which the second order derivative is replaced by the Caputo fractional derivative. The Laplace transform method is applied to obtain algebraic equations. Then, the eigenvalues and the eigenfunctions of the fractional Sturm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Indian journal of pure and applied mathematics Ročník 51; číslo 3; s. 857 - 868
Hlavní autori: Sadabad, Mahnaz Kashfi, Akbarfam, Aliasghar Jodayree, Shiri, Babak
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New Delhi Indian National Science Academy 01.09.2020
Springer Nature B.V
Predmet:
ISSN:0019-5588, 0975-7465
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider a class of fractional Sturm-Liouville problems, in which the second order derivative is replaced by the Caputo fractional derivative. The Laplace transform method is applied to obtain algebraic equations. Then, the eigenvalues and the eigenfunctions of the fractional Sturm-Liouville problems are obtained numerically. We provide a convergence analysis for given method. Finally, the simplicity and efficiency of the numerical method is shown by some examples.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-020-0436-2