Generalized Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation
This paper considers the Cauchy problem of a semi-linear elliptic equation and uses a generalized Tikhonov-type regularization method to overcome its ill-posedness. The existence, uniqueness, and stability for regularized solution are proven. Under an a priori bound assumption for exact solution, we...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 81; H. 3; S. 833 - 851 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper considers the Cauchy problem of a semi-linear elliptic equation and uses a generalized Tikhonov-type regularization method to overcome its ill-posedness. The existence, uniqueness, and stability for regularized solution are proven. Under an a priori bound assumption for exact solution, we derive the convergence estimate of H
ö
lder type for this method. An application of this method to the Cauchy problem of Helmholtz equation is discussed, and we investigate the stability and convergence estimates for different wave numbers. Finally, an iterative scheme is constructed to calculate the regularization solution, numerical results show that this method is stable and feasible. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-018-0573-4 |