Polynomial-Time Approximation Algorithm for the Problem of Cardinality-Weighted Variance-Based 2-Clustering with a Given Center

A strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters is considered. The solution criterion is the minimum of the sum (over both clusters) of weighted sums of squared distances from the elements of each cluster to its geometric center. The weights of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 58; číslo 1; s. 130 - 136
Hlavní autoři: Kel’manov, A. V., Motkova, A. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2018
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters is considered. The solution criterion is the minimum of the sum (over both clusters) of weighted sums of squared distances from the elements of each cluster to its geometric center. The weights of the sums are equal to the cardinalities of the desired clusters. The center of one cluster is given as input, while the center of the other is unknown and is determined as the point of space equal to the mean of the cluster elements. A version of the problem is analyzed in which the cardinalities of the clusters are given as input. A polynomial-time 2-approximation algorithm for solving the problem is constructed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542518010074