3D Numerical simulation method of electromagnetic forming for low conductive metals with a driver

Electromagnetic forming (EMF) process is a high-speed forming process which can inhibit warping, reduce springback, and improve the formability of material at room temperature. In general, the electromagnetic forming process is applied to high-conductive metals such as copper, aluminum, and their al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced manufacturing technology Ročník 64; číslo 9-12; s. 1575 - 1585
Hlavní autoři: Li, Fenqiang, Mo, Jianhua, Zhou, Haiyang, Fang, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer-Verlag 01.02.2013
Springer Nature B.V
Témata:
ISSN:0268-3768, 1433-3015
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Electromagnetic forming (EMF) process is a high-speed forming process which can inhibit warping, reduce springback, and improve the formability of material at room temperature. In general, the electromagnetic forming process is applied to high-conductive metals such as copper, aluminum, and their alloys. In order to solve the problem of the low formability of titanium alloy, the electromagnetic forming process can be applied to form titanium alloy. The effects on the forming properties of titanium and other low-conductive metals must be studied before the EMF process is used. To that end, this paper presents a tool: a 3D numerical simulation method of electromagnetic forming with a driver. First, the electromagnetic field distribution and electromagnetic forces are calculated using the ANSYS/EMAG software. The resulting data are then imported to ABAQUS/Explicit software to carry out mechanical analysis. Although the electromagnetic field calculation does not take the deformation of the blank into account, the results accurately reflect the law of the deformation. This method is especially suitable for cases involving small deformations, such as tube compression and embossing. The calculation can also be used to simulate the impact forming process between the driver and the blank.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-012-4124-1