Universal and Accessible Entropy Estimation Using a Compression Algorithm
Entropy and free-energy estimation are key in thermodynamic characterization of simulated systems ranging from spin models through polymers, colloids, protein structure, and drug design. Current techniques suffer from being model specific, requiring abundant computation resources and simulation at c...
Saved in:
| Published in: | Physical review letters Vol. 123; no. 17; p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
College Park
American Physical Society
25.10.2019
|
| Subjects: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Entropy and free-energy estimation are key in thermodynamic characterization of simulated systems ranging from spin models through polymers, colloids, protein structure, and drug design. Current techniques suffer from being model specific, requiring abundant computation resources and simulation at conditions far from the studied realization. Here, we present a universal scheme to calculate entropy using lossless-compression algorithms and validate it on simulated systems of increasing complexity. Our results show accurate entropy values compared to benchmark calculations while being computationally effective. In molecular-dynamics simulations of protein folding, we exhibit unmatched detection capability of the folded states by measuring previously undetectable entropy fluctuations along the simulation timeline. Such entropy evaluation opens a new window onto the dynamics of complex systems and allows efficient free-energy calculations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0031-9007 1079-7114 1079-7114 |
| DOI: | 10.1103/PhysRevLett.123.178102 |