On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics

In this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 73; číslo 1; s. 157 - 177
Hlavní autoři: Pitton, Giuseppe, Rozza, Gianluigi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2017
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite general since it can in principle be specialized to a wide class of nonlinear problems, but in this work we focus on an application in incompressible fluid dynamics at low Reynolds numbers. The validation of the reduced order model with the full order computation for a benchmark cavity flow problem is promising.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-017-0419-6