On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics

In this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 73; H. 1; S. 157 - 177
Hauptverfasser: Pitton, Giuseppe, Rozza, Gianluigi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2017
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we apply a reduced basis framework for the computation of flow bifurcation (and stability) problems in fluid dynamics. The proposed method aims at reducing the complexity and the computational time required for the construction of bifurcation and stability diagrams. The method is quite general since it can in principle be specialized to a wide class of nonlinear problems, but in this work we focus on an application in incompressible fluid dynamics at low Reynolds numbers. The validation of the reduced order model with the full order computation for a benchmark cavity flow problem is promising.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-017-0419-6