Regularized gradient-projection methods for the constrained convex minimization problem and the zero points of maximal monotone operator

In this paper, based on the viscosity approximation method and the regularized gradient-projection algorithm, we find a common element of the solution set of a constrained convex minimization problem and the set of zero points of the maximal monotone operator problem. In particular, the set of zero...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fixed point theory and applications (Hindawi Publishing Corporation) Ročník 2015; číslo 1; s. 1 - 23
Hlavní autori: Tian, Ming, Jiao, Si-Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.02.2015
Predmet:
ISSN:1687-1812, 1687-1812
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, based on the viscosity approximation method and the regularized gradient-projection algorithm, we find a common element of the solution set of a constrained convex minimization problem and the set of zero points of the maximal monotone operator problem. In particular, the set of zero points of the maximal monotone operator problem can be transformed into the equilibrium problem. Under suitable conditions, new strong convergence theorems are obtained, which are useful in nonlinear analysis and optimization. As an application, we apply our algorithm to solving the split feasibility problem and the constrained convex minimization problem in Hilbert spaces.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-1812
1687-1812
DOI:10.1186/s13663-015-0258-9