Model theory of complex numbers with polynomial functions Model theory of complex numbers with polynomial functions
Let C be the set of complex numbers, and let P be a collection of complex polynomial maps in several variables. Assuming at least one P ∈ P depends on at least two variables, we classify all possibilities for the structure ( C ; P ) up to definable equivalence. In particular, outside a short list of...
Uložené v:
| Vydané v: | Selecta mathematica (Basel, Switzerland) Ročník 31; číslo 5 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.11.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1022-1824, 1420-9020 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let
C
be the set of complex numbers, and let
P
be a collection of complex polynomial maps in several variables. Assuming at least one
P
∈
P
depends on at least two variables, we classify all possibilities for the structure
(
C
;
P
)
up to definable equivalence. In particular, outside a short list of exceptions, we show that
(
C
;
P
)
always defines
+
and
×
. Our tools include Zilber’s Restricted Trichotomy, as well as the classification of symmetric non-expanding pairs of polynomials over
C
from arithmetic combinatorics. Along the way, we also give a new condition for a reduct
of a smooth curve over an algebraically closed field to recover all constructible subsets of powers of
M
. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1022-1824 1420-9020 |
| DOI: | 10.1007/s00029-025-01086-x |