A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks

Sentiment analysis is crucial in various systems such as opinion mining and predicting. Considerable research has been done to analyze sentiment using various machine learning techniques. However, the high error rates in these studies can reduce the entire system’s efficiency. We introduce a novel b...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 76; no. 6; pp. 4414 - 4429
Main Authors: Alarifi, Abdulaziz, Tolba, Amr, Al-Makhadmeh, Zafer, Said, Wael
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2020
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sentiment analysis is crucial in various systems such as opinion mining and predicting. Considerable research has been done to analyze sentiment using various machine learning techniques. However, the high error rates in these studies can reduce the entire system’s efficiency. We introduce a novel big data and machine learning technique for evaluating sentiment analysis processes to overcome this problem. The data are collected from a huge volume of datasets, helpful in the effective analysis of systems. The noise in the data is eliminated using a preprocessing data mining concept. From the cleaned sentiment data, effective features are selected using a greedy approach that selects optimal features processed by an optimal classifier called cat swarm optimization-based long short-term memory neural network (CSO-LSTMNN). The classifiers analyze sentiment-related features according to cat behavior, minimizing error rate while examining features. This technique helps improve system efficiency, analyzed using experimental results of error rate, precision, recall, and accuracy. The results obtained by implementing the greedy feature and CSO-LSTMNN algorithm and the particle swarm optimization (PSO) algorithm are compared; CSO-LSTMNN outperforms PSO in terms of increasing accuracy and decreasing error rate.
AbstractList Sentiment analysis is crucial in various systems such as opinion mining and predicting. Considerable research has been done to analyze sentiment using various machine learning techniques. However, the high error rates in these studies can reduce the entire system’s efficiency. We introduce a novel big data and machine learning technique for evaluating sentiment analysis processes to overcome this problem. The data are collected from a huge volume of datasets, helpful in the effective analysis of systems. The noise in the data is eliminated using a preprocessing data mining concept. From the cleaned sentiment data, effective features are selected using a greedy approach that selects optimal features processed by an optimal classifier called cat swarm optimization-based long short-term memory neural network (CSO-LSTMNN). The classifiers analyze sentiment-related features according to cat behavior, minimizing error rate while examining features. This technique helps improve system efficiency, analyzed using experimental results of error rate, precision, recall, and accuracy. The results obtained by implementing the greedy feature and CSO-LSTMNN algorithm and the particle swarm optimization (PSO) algorithm are compared; CSO-LSTMNN outperforms PSO in terms of increasing accuracy and decreasing error rate.
Author Al-Makhadmeh, Zafer
Tolba, Amr
Alarifi, Abdulaziz
Said, Wael
Author_xml – sequence: 1
  givenname: Abdulaziz
  surname: Alarifi
  fullname: Alarifi, Abdulaziz
  organization: Computer Science Department, Community College, King Saud University
– sequence: 2
  givenname: Amr
  surname: Tolba
  fullname: Tolba, Amr
  email: atolba@ksu.edu.sa
  organization: Computer Science Department, Community College, King Saud University, Mathematics and Computer Science Department, Faculty of Science, Menoufia University
– sequence: 3
  givenname: Zafer
  surname: Al-Makhadmeh
  fullname: Al-Makhadmeh, Zafer
  organization: Computer Science Department, Community College, King Saud University
– sequence: 4
  givenname: Wael
  surname: Said
  fullname: Said, Wael
  organization: Computer Science Department, Faculty of Computers and Information, Zagazig University
BookMark eNp9kMGKFDEQhoOs4OzqA3gLeI6mknSn57gsugoLXvQcqtPVM1m7O2OSZhjfwjc24wiCsF6qDvm_StV3za6WuBBjr0G-BSntuwyglBUSOqH0tpZnbAON1UKazlyxjdwqKbrGqBfsOudHKaXRVm_Yz1vehx0fsCDHwyFF9HteIs-0lDDXwnHB6ZRD5msOy47vEtFw4iNhWRPV3ES-hLjwYyh77rHwfMQ083iofPiB5zfRY6aBT7HyeR9TEYVqZKY5phNfaE041VaOMX3LL9nzEadMr_70G_b1w_svdx_Fw-f7T3e3D8JraIsw29HoUUuU2A5dC4MawXqA3kBvGz-QRmkJms4gyaah3igYjG116wF1p_QNe3OZW4_-vlIu7jGuqR6bnTLS2tZ2oGsKLimfYs6JRndIYcZ0ciDd2by7mHfVvDubd-fJ9h_Gh_JbREkYpv-S6kLm-suyo_R3p6ehX8KsnJ8
CitedBy_id crossref_primary_10_1007_s11227_021_04132_5
crossref_primary_10_1007_s44196_025_00919_z
crossref_primary_10_1155_2022_1559726
crossref_primary_10_1155_2022_4305886
crossref_primary_10_1155_2021_3865190
crossref_primary_10_1007_s12652_018_1166_8
crossref_primary_10_1080_0954898X_2023_2293895
crossref_primary_10_1007_s11227_021_03652_4
crossref_primary_10_1111_exsy_13096
crossref_primary_10_1155_2021_5058791
crossref_primary_10_1155_2021_8785127
crossref_primary_10_1145_3589184
crossref_primary_10_1007_s12065_023_00887_3
crossref_primary_10_4018_IJBDCN_341263
crossref_primary_10_1016_j_patcog_2020_107805
crossref_primary_10_1007_s00779_019_01258_5
crossref_primary_10_1007_s11107_022_00982_y
crossref_primary_10_3390_sym13050805
crossref_primary_10_1111_exsy_12816
crossref_primary_10_1155_2021_6592938
crossref_primary_10_1007_s11042_019_7586_4
crossref_primary_10_1007_s11042_023_14767_6
crossref_primary_10_1007_s12083_020_00924_3
crossref_primary_10_1109_ACCESS_2024_3375119
crossref_primary_10_1007_s10660_019_09373_4
crossref_primary_10_1007_s10660_019_09377_0
crossref_primary_10_1007_s11135_025_02209_4
crossref_primary_10_1155_2021_5194044
crossref_primary_10_3390_su151310690
crossref_primary_10_1007_s10586_020_03062_w
crossref_primary_10_1108_K_02_2021_0159
crossref_primary_10_1007_s10462_021_09973_3
crossref_primary_10_1007_s11227_021_04028_4
crossref_primary_10_1007_s13198_022_01677_3
crossref_primary_10_1016_j_ipm_2021_102758
crossref_primary_10_1007_s13369_021_05599_3
crossref_primary_10_1080_10255842_2022_2078966
crossref_primary_10_3389_fnbot_2022_865693
crossref_primary_10_1155_2022_1743691
crossref_primary_10_1111_exsy_12867
crossref_primary_10_1155_2021_7171816
crossref_primary_10_3233_JCM_247513
crossref_primary_10_1007_s00034_019_01066_5
crossref_primary_10_1515_comp_2020_0218
crossref_primary_10_1007_s00779_019_01257_6
crossref_primary_10_53759_7669_jmc202505093
crossref_primary_10_1007_s00607_019_00741_4
crossref_primary_10_1007_s00607_019_00745_0
crossref_primary_10_1016_j_comcom_2019_11_045
crossref_primary_10_1016_j_measurement_2020_108254
crossref_primary_10_1088_2632_2153_acc0d5
crossref_primary_10_1109_ACCESS_2023_3256521
crossref_primary_10_1155_2021_3884587
crossref_primary_10_1155_2021_2993870
crossref_primary_10_3390_math9202627
crossref_primary_10_32604_cmc_2022_019125
crossref_primary_10_1155_2022_8957082
crossref_primary_10_1016_j_knosys_2021_107629
crossref_primary_10_3233_JIFS_221879
crossref_primary_10_1155_2021_1890120
Cites_doi 10.1016/j.asoc.2017.11.019
10.1007/978-3-319-60435-0_20
10.1007/s10957-013-0458-6
10.1016/j.knosys.2018.04.006
10.1016/j.patrec.2016.01.016
10.1016/j.asoc.2011.09.017
10.1007/978-1-4899-7687-1_907
10.1109/TKDE.2013.111
10.1007/s10115-013-0706-y
10.1007/978-981-10-3874-7_66
10.1007/s10586-018-2014-5
10.1016/j.patcog.2011.11.005
10.5815/ijmecs.2014.12.08
10.1109/TCBB.2015.2462349
10.1109/TKDE.2013.182
10.1016/j.knosys.2015.01.010
10.1109/72.963769.ISSN1045-9227
10.1007/s10922-017-9419-y
10.1007/978-981-10-3223-3_36
10.1007/s10462-016-9517-3
10.1561/1500000011
10.1080/24751839.2018.1423792
10.17485/ijst/2016/v9i32/100209
10.1007/s10994-013-5375-2
10.1108/K-08-2016-0196
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-018-2398-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 4429
ExternalDocumentID 10_1007_s11227_018_2398_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-49f43f30a0a6d861d2f17c11b41b75cde3a07e1584ae055eb421d47636c1a3823
IEDL.DBID RSV
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543804200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:41:26 EDT 2025
Tue Nov 18 21:53:29 EST 2025
Sat Nov 29 04:27:36 EST 2025
Fri Feb 21 02:27:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Greedy algorithm
Sentiment analysis
Big data
Cat swarm optimization-based long short-term memory neural network
Particle swarm optimization
Error rate precision
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-49f43f30a0a6d861d2f17c11b41b75cde3a07e1584ae055eb421d47636c1a3823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2407767813
PQPubID 2043774
PageCount 16
ParticipantIDs proquest_journals_2407767813
crossref_primary_10_1007_s11227_018_2398_2
crossref_citationtrail_10_1007_s11227_018_2398_2
springer_journals_10_1007_s11227_018_2398_2
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang, Liu (CR1) 2017
Pang, Lee (CR3) 2008; 2
Bhalla, Jain (CR12) 2016; 9
Yang, Sadat Hosseini, Gandomi (CR33) 2012; 12
Astorino, Fuduli (CR17) 2015; 164
Zhang, Zhao, Chow (CR18) 2015; 27
Hazewinkel (CR31) 2001
CR16
Roy, Biswas, Chaudhuri (CR8) 2014; 12
Subramanya, Bilmes (CR19) 2011; 12
Chakraborty, Kawamura (CR28) 2018; 2
Mahi, Baykan, Kodaz (CR9) 2018; 62
Bhatia, Sharma, Bhatia (CR4) 2018
Tolba, Elashkar (CR5) 2018; 22
Cecotti (CR20) 2016; 73
Nayak, Naik, Behera (CR27) 2016; 19
Black (CR30) 2005
Gers, Schmidhuber (CR32) 2001; 12
Meysam, Yasin, Mohammad, Mohammad (CR35) 2013; 11
Liu, Gao, Zhang, Lu, Chen, Liang, Tao (CR6) 2017; 14
Long, Wang, Ding, Pan, Yu (CR24) 2014; 26
Kumar, Mishra (CR34) 2013; 4
Perlich, Dalessandro, Raeder, Stitelman, Provost (CR23) 2015; 95
Nikitidis, Nikolaidis, Pitas (CR13) 2012; 45
Isaac, García, Herrera (CR15) 2015; 42
Lee, Jeong, Seo, Kim, Kang (CR2) 2018; 152
CR25
Nabaei, Hamian, Parsaei, Safdari, Samad-Soltani, Zarrabi, Ghassemi (CR7) 2018; 49
CR21
Lu, Behbood, Hao, Zuo, Xue, Zhang (CR22) 2015; 80
Pandey, Rajput, Mishra (CR10) 2018
Gill, Buyya, Chana, Singh, Abraham (CR11) 2018; 26
La, Cao, Qin (CR29) 2018; 47
Kingma, Mohamed, Rezende, Welling (CR14) 2014; 2
Kumar, Khorwal (CR26) 2017
A Kumar (2398_CR26) 2017
O Meysam (2398_CR35) 2013; 11
DP Kingma (2398_CR14) 2014; 2
SS Gill (2398_CR11) 2018; 26
FA Gers (2398_CR32) 2001; 12
2398_CR21
B Chakraborty (2398_CR28) 2018; 2
L La (2398_CR29) 2018; 47
H Cecotti (2398_CR20) 2016; 73
2398_CR25
S Bhatia (2398_CR4) 2018
HM Pandey (2398_CR10) 2018
A Subramanya (2398_CR19) 2011; 12
S Roy (2398_CR8) 2014; 12
J Lu (2398_CR22) 2015; 80
J Nayak (2398_CR27) 2016; 19
A Nabaei (2398_CR7) 2018; 49
T Isaac (2398_CR15) 2015; 42
(2398_CR31) 2001
S Nikitidis (2398_CR13) 2012; 45
R Bhalla (2398_CR12) 2016; 9
Amr Tolba (2398_CR5) 2018; 22
X-S Yang (2398_CR33) 2012; 12
A Kumar (2398_CR34) 2013; 4
M Mahi (2398_CR9) 2018; 62
Z Zhang (2398_CR18) 2015; 27
B Pang (2398_CR3) 2008; 2
Y Liu (2398_CR6) 2017; 14
C Perlich (2398_CR23) 2015; 95
M Long (2398_CR24) 2014; 26
PE Black (2398_CR30) 2005
Lei Zhang (2398_CR1) 2017
2398_CR16
Gichang Lee (2398_CR2) 2018; 152
A Astorino (2398_CR17) 2015; 164
References_xml – volume: 14
  start-page: 108
  year: 2017
  end-page: 120
  ident: CR6
  article-title: Solving NP-hard problems with Physarum-based ant colony system
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– volume: 95
  start-page: 103
  year: 2015
  end-page: 127
  ident: CR23
  article-title: Machine learning for targeted display advertising: transfer learning in action
  publication-title: Mach Learn
– start-page: 693
  year: 2017
  end-page: 703
  ident: CR26
  article-title: Firefly algorithm for feature selection in sentiment analysis
  publication-title: Computational intelligence in data mining
– year: 2005
  ident: CR30
  publication-title: Greedy algorithm
– volume: 27
  start-page: 2362
  year: 2015
  end-page: 2376
  ident: CR18
  article-title: Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood
  publication-title: IEEE Trans Knowl Data Eng
– ident: CR16
– volume: 22
  start-page: 3183
  issue: S2
  year: 2018
  end-page: 3189
  ident: CR5
  article-title: Soft computing approaches based bookmark selection and clustering techniques for social tagging systems
  publication-title: Cluster Computing
– volume: 49
  start-page: 79
  year: 2018
  end-page: 103
  ident: CR7
  article-title: Topologies and performance of intelligent algorithms: a comprehensive review
  publication-title: Artif Intell Rev
– start-page: 377
  year: 2018
  end-page: 384
  ident: CR10
  article-title: Performance comparison of pattern search, simulated annealing, genetic algorithm and jaya algorithm
  publication-title: Data engineering and intelligent computing
– volume: 2
  start-page: 1
  year: 2018
  end-page: 18
  ident: CR28
  article-title: A new penalty-based wrapper fitness function for feature subset selection with evolutionary algorithms
  publication-title: J Inf Telecommun
– volume: 164
  start-page: 1039
  year: 2015
  end-page: 1050
  ident: CR17
  article-title: Support vector machine polyhedral separability in semi supervised learning
  publication-title: J Optim Theory Appl
– volume: 45
  start-page: 1838
  year: 2012
  end-page: 1852
  ident: CR13
  article-title: Multiplicative update rules for incremental training of multiclass support vector machines
  publication-title: Pattern Recognit
– volume: 12
  start-page: 1333
  year: 2001
  end-page: 1340
  ident: CR32
  article-title: LSTM recurrent networks learn simple context-free and context-sensitive languages
  publication-title: IEEE Trans Neural Netw
– volume: 80
  start-page: 14
  year: 2015
  end-page: 23
  ident: CR22
  article-title: Transfer learning using computational intelligence: a survey
  publication-title: Knowl-Based Sys
– ident: CR25
– volume: 47
  start-page: 474
  year: 2018
  end-page: 486
  ident: CR29
  article-title: Take full advantage of unlabeled data for sentiment classification
  publication-title: Kybernetes
– volume: 11
  start-page: 32
  year: 2013
  end-page: 41
  ident: CR35
  article-title: A novel cat swarm optimization algorithm for unconstrained optimization problems
  publication-title: Int J Inf Technol Comp Sci
– ident: CR21
– volume: 19
  start-page: 197
  year: 2016
  end-page: 211
  ident: CR27
  article-title: A novel nature inspired firefly algorithm with higher order neural network: performance analysis
  publication-title: Eng Sci Technol
– start-page: 503
  year: 2018
  end-page: 523
  ident: CR4
  article-title: Sentiment analysis and mining of opinions
  publication-title: Internet of things and big data analytics toward next-generation intelligence
– volume: 62
  start-page: 571
  year: 2018
  end-page: 578
  ident: CR9
  article-title: A new approach based on particle swarm optimization algorithm for solving data allocation problem
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 32
  year: 2016
  ident: CR12
  article-title: A model based on effective and intelligent sentiment mining: a review
  publication-title: Indian J Sci Technol
– year: 2001
  ident: CR31
  publication-title: [1994] Greedy algorithm. Encyclopedia of mathematics
– volume: 26
  start-page: 361
  year: 2018
  end-page: 400
  ident: CR11
  article-title: BULLET: particle swarm optimization based scheduling technique for provisioned cloud resources
  publication-title: J Netw Sys Manag
– volume: 12
  start-page: 3311
  year: 2011
  end-page: 3370
  ident: CR19
  article-title: Semi-supervised learning with measure propagation
  publication-title: J Mach Learn Res
– volume: 26
  start-page: 1076
  year: 2014
  end-page: 1089
  ident: CR24
  article-title: Adaptation regularization: a general framework for transfer learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 2
  start-page: 1
  year: 2008
  end-page: 135
  ident: CR3
  article-title: Opinion mining and sentiment analysis
  publication-title: Found Trends Inf Retr
– volume: 2
  start-page: 3581
  year: 2014
  end-page: 3589
  ident: CR14
  article-title: Semi-supervised learning with deep generative models
  publication-title: Adv Neural Inf Proc Sys
– start-page: 1152
  year: 2017
  end-page: 1161
  ident: CR1
  article-title: Sentiment Analysis and Opinion Mining
  publication-title: Encyclopedia of Machine Learning and Data Mining
– volume: 73
  start-page: 76
  year: 2016
  end-page: 82
  ident: CR20
  article-title: Active graph based semi-supervised learning using image matching: application to handwritten digit recognition
  publication-title: Pattern Recognit Lett.
– volume: 152
  start-page: 70
  year: 2018
  end-page: 82
  ident: CR2
  article-title: Sentiment classification with word localization based on weakly supervised learning with a convolutional neural network
  publication-title: Knowledge-Based Systems
– volume: 12
  start-page: 55
  year: 2014
  end-page: 65
  ident: CR8
  article-title: Nature-inspired swarm intelligence and its applications
  publication-title: Int J Mod Educ Comp Sci
– volume: 12
  start-page: 1180
  year: 2012
  end-page: 1186
  ident: CR33
  article-title: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect
  publication-title: Appl Soft Comput
– volume: 4
  start-page: 1185
  year: 2013
  ident: CR34
  article-title: Cat swarm based optimization of gene expression data classification
  publication-title: Int J Comp Trends Technol (IJCTT)
– volume: 42
  start-page: 245
  year: 2015
  end-page: 284
  ident: CR15
  article-title: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
  publication-title: Knowl Inf Sys
– volume: 62
  start-page: 571
  year: 2018
  ident: 2398_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.019
– volume: 11
  start-page: 32
  year: 2013
  ident: 2398_CR35
  publication-title: Int J Inf Technol Comp Sci
– start-page: 503
  volume-title: Internet of things and big data analytics toward next-generation intelligence
  year: 2018
  ident: 2398_CR4
  doi: 10.1007/978-3-319-60435-0_20
– volume: 164
  start-page: 1039
  year: 2015
  ident: 2398_CR17
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-013-0458-6
– ident: 2398_CR21
– volume-title: [1994] Greedy algorithm. Encyclopedia of mathematics
  year: 2001
  ident: 2398_CR31
– volume: 152
  start-page: 70
  year: 2018
  ident: 2398_CR2
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.04.006
– volume: 73
  start-page: 76
  year: 2016
  ident: 2398_CR20
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/j.patrec.2016.01.016
– volume: 12
  start-page: 1180
  year: 2012
  ident: 2398_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.09.017
– start-page: 1152
  volume-title: Encyclopedia of Machine Learning and Data Mining
  year: 2017
  ident: 2398_CR1
  doi: 10.1007/978-1-4899-7687-1_907
– volume: 2
  start-page: 3581
  year: 2014
  ident: 2398_CR14
  publication-title: Adv Neural Inf Proc Sys
– volume: 26
  start-page: 1076
  year: 2014
  ident: 2398_CR24
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.111
– volume: 42
  start-page: 245
  year: 2015
  ident: 2398_CR15
  publication-title: Knowl Inf Sys
  doi: 10.1007/s10115-013-0706-y
– start-page: 693
  volume-title: Computational intelligence in data mining
  year: 2017
  ident: 2398_CR26
  doi: 10.1007/978-981-10-3874-7_66
– ident: 2398_CR25
– volume-title: Greedy algorithm
  year: 2005
  ident: 2398_CR30
– volume: 22
  start-page: 3183
  issue: S2
  year: 2018
  ident: 2398_CR5
  publication-title: Cluster Computing
  doi: 10.1007/s10586-018-2014-5
– volume: 45
  start-page: 1838
  year: 2012
  ident: 2398_CR13
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.11.005
– volume: 19
  start-page: 197
  year: 2016
  ident: 2398_CR27
  publication-title: Eng Sci Technol
– volume: 12
  start-page: 55
  year: 2014
  ident: 2398_CR8
  publication-title: Int J Mod Educ Comp Sci
  doi: 10.5815/ijmecs.2014.12.08
– volume: 14
  start-page: 108
  year: 2017
  ident: 2398_CR6
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2015.2462349
– ident: 2398_CR16
– volume: 27
  start-page: 2362
  year: 2015
  ident: 2398_CR18
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.182
– volume: 80
  start-page: 14
  year: 2015
  ident: 2398_CR22
  publication-title: Knowl-Based Sys
  doi: 10.1016/j.knosys.2015.01.010
– volume: 12
  start-page: 3311
  year: 2011
  ident: 2398_CR19
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 1333
  year: 2001
  ident: 2398_CR32
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.963769.ISSN1045-9227
– volume: 26
  start-page: 361
  year: 2018
  ident: 2398_CR11
  publication-title: J Netw Sys Manag
  doi: 10.1007/s10922-017-9419-y
– start-page: 377
  volume-title: Data engineering and intelligent computing
  year: 2018
  ident: 2398_CR10
  doi: 10.1007/978-981-10-3223-3_36
– volume: 4
  start-page: 1185
  year: 2013
  ident: 2398_CR34
  publication-title: Int J Comp Trends Technol (IJCTT)
– volume: 49
  start-page: 79
  year: 2018
  ident: 2398_CR7
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-016-9517-3
– volume: 2
  start-page: 1
  year: 2008
  ident: 2398_CR3
  publication-title: Found Trends Inf Retr
  doi: 10.1561/1500000011
– volume: 2
  start-page: 1
  year: 2018
  ident: 2398_CR28
  publication-title: J Inf Telecommun
  doi: 10.1080/24751839.2018.1423792
– volume: 9
  start-page: 32
  year: 2016
  ident: 2398_CR12
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i32/100209
– volume: 95
  start-page: 103
  year: 2015
  ident: 2398_CR23
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5375-2
– volume: 47
  start-page: 474
  year: 2018
  ident: 2398_CR29
  publication-title: Kybernetes
  doi: 10.1108/K-08-2016-0196
SSID ssj0004373
Score 2.5134997
Snippet Sentiment analysis is crucial in various systems such as opinion mining and predicting. Considerable research has been done to analyze sentiment using various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4414
SubjectTerms Big Data
Classifiers
Compilers
Computer Science
Data mining
Error analysis
Greedy algorithms
Interpreters
Machine learning
Neural networks
Optimization
Particle swarm optimization
Processor Architectures
Programming Languages
Sentiment analysis
System effectiveness
Title A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks
URI https://link.springer.com/article/10.1007/s11227-018-2398-2
https://www.proquest.com/docview/2407767813
Volume 76
WOSCitedRecordID wos000543804200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQD5wAlVq0mxtjxNi4oQQL-1WpWkyJm0rWguIn8E_xu6DCgRIcOmlSRTFjh-x_ZmxY2ElaRHlyMQ3jkSX2Qm1dB0jEiHRPECT1xbNJvzLy2A0Cq-qOu6sznavQ5KFpG6K3bgQlCaJlPVC_CyzFdR2AfVruL65b4ohvTKsHKJfFPSkqEOZ3y3xWRk1FuaXoGiha4btf-1yg61XpiUMSl7YZEtmvsXaddsGqG7xNnsbQDwZA-WGQg0pDnkKVIZUYP2DqpBKgLLix4AuOcpisKYAAYWsaJ2D9AR6xAWtcshe1GIGKYqfWVXX6ZB6TGCa4vzsAW18h3QAzCix9xUIRRO3Oi9z0LMddjc8vz27cKrODI72eD9HmlrpWc9VruonQZ8nwnJfcx5LHvs9nRhPub7haNwo4_Z6JpaCJxJFWV9zRZHHXdaap3Ozx4BKc-OEsnEseorkfyG_CD-23Ibaxm6HuTWJIl3BllP3jGnUAC7TkUd45BEdeSQ67ORjymOJ2fHb4G5N96i6vllEbq6Papx7HXZa07n5_eNi-38afcDWBHnvxZtOl7XyxZM5ZKv6OZ9ki6OCq98Boa3yMw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV58i-tzDp6UQpNmt9ujiKKoi_jCW0nTRAV3V7ZV8Wf4j53pthZFBb300iSEzGQemZlvALakU6xFtKfS0HqKXGYvMsr3rEylIvOATF5XNJsIO532zU10VtZxZ1W2exWSLCR1XewmpOQ0SaJsENFnFMYVKSwGzD-_uK6LIYNhWDkiv6jdVLIKZX63xGdlVFuYX4Kiha45mPnXLmdhujQtcXfIC3MwYnvzMFO1bcDyFi_A2y4m97fIuaFYQYpj3kcuQyqw_lGXSCXIWfG3SC45yWJ0tgABxaxonUP0RH7ERaNzzF70oIt9Ej_dsq7TY_WY4kOf5md3ZON7rAOwy4m9r8gomrTV3jAHPVuEq4P9y71Dr-zM4JlAtHKiqVOBC3zt61babolUOhEaIRIlkrBpUhtoP7SCjBtt_WbTJkSoVJEoaxmhOfK4BGO9fs8uA3JpbpJyNo4jT5H9L-IXGSZOuMi4xG-AX5EoNiVsOXfPeIhrwGU-8piOPOYjj2UDtj-mPA4xO34bvFbRPS6vbxazmxuSGhdBA3YqOte_f1xs5U-jN2Hy8PL0JD456hyvwpRkT75431mDsXzwZNdhwjzn99lgo-DwdwOy9Rc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqFAvBfpQt1A6B05U0caOd7M5IsqqiGqFBK32Fjl-0JV2s2gTqPoz-o87k0cjKloJcckltmV5bM98nplvAA6lV6xFdKBs7AJFkDlIjAoDJ61UZB6QyeurYhPxZDKaTpOLps5p0Ua7ty7JOqeBWZrysn9jfb9LfBNScsgkSTlK6LMOm4rj6BmuX37rEiOj2sWcEEYaDZRs3ZoPDXFfMXXW5l8O0krvjLefPOMdeNGYnHhc75FdWHP5S9huyzlgc7pfwa9jzGbXyDGj2FKNY7lETk-qagCgbhhMkKPlr5GgOt3R6F1FDopFVVKH5Iz8uItGl1j80KsFLulaWjT5ngGrTYvzJfUvvpPtH7BuwAUH_P5EZtekqeZ1bHrxGr6OT69OPgdNxYbARGJYkqy9inwU6lAP7WgorPQiNkJkSmTxwFgX6TB2gowe7cLBwGVKCqvoihsaodkj-QY28mXu3gJyym5mOUrHE4JkXEb7SMaZFz4xPgt7ELbiSk1DZ85VNeZpR8TMS57Skqe85KnswdGfLjc1l8f_Gu-3eyBtjnWRMvyNSb2LqAcfW5l3v_852LtHtf4AWxefxumXs8n5HjyXDPCrZ5992ChXt-49PDN35axYHVSb_Tdkg_37
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+big+data+approach+to+sentiment+analysis+using+greedy+feature+selection+with+cat+swarm+optimization-based+long+short-term+memory+neural+networks&rft.jtitle=The+Journal+of+supercomputing&rft.au=Alarifi%2C+Abdulaziz&rft.au=Tolba%2C+Amr&rft.au=Al-Makhadmeh%2C+Zafer&rft.au=Said%2C+Wael&rft.date=2020-06-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=6&rft.spage=4414&rft.epage=4429&rft_id=info:doi/10.1007%2Fs11227-018-2398-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_018_2398_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon