Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing
In this paper, a bio-inspired computational intelligence technique is presented for solving nonlinear doubly singular system using artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and their hybrid GA–SQP. The power of ANN models is utilized to devel...
Uložené v:
| Vydané v: | Neural computing & applications Ročník 31; číslo 3; s. 793 - 812 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
14.03.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a bio-inspired computational intelligence technique is presented for solving nonlinear doubly singular system using artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and their hybrid GA–SQP. The power of ANN models is utilized to develop a fitness function for a doubly singular nonlinear system based on approximation theory in the mean square sense. Global search for the parameters of networks is performed with the competency of GAs and later on fine-tuning is conducted through efficient local search by SQP algorithm. The design methodology is evaluated on number of variants for two point doubly singular systems. Comparative studies with standard results validate the correctness of proposed schemes. The consistent correctness of the proposed technique is proven through statistics using different performance indices. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0941-0643 1433-3058 |
| DOI: | 10.1007/s00521-017-3110-9 |