Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing

In this paper, a bio-inspired computational intelligence technique is presented for solving nonlinear doubly singular system using artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and their hybrid GA–SQP. The power of ANN models is utilized to devel...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 31; číslo 3; s. 793 - 812
Hlavní autori: Raja, Muhammad Asif Zahoor, Mehmood, Jabran, Sabir, Zulqurnain, Nasab, A. Kazemi, Manzar, Muhammad Anwaar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 14.03.2019
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a bio-inspired computational intelligence technique is presented for solving nonlinear doubly singular system using artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and their hybrid GA–SQP. The power of ANN models is utilized to develop a fitness function for a doubly singular nonlinear system based on approximation theory in the mean square sense. Global search for the parameters of networks is performed with the competency of GAs and later on fine-tuning is conducted through efficient local search by SQP algorithm. The design methodology is evaluated on number of variants for two point doubly singular systems. Comparative studies with standard results validate the correctness of proposed schemes. The consistent correctness of the proposed technique is proven through statistics using different performance indices.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-017-3110-9