A linear time randomized approximation algorithm for Euclidean matching

We study the problem of computing Euclidean minimum weight matching which investigates the minimum weight perfect matching in a complete geometric graph on a set of 2 n points in the plane. We propose a simple randomized approximation algorithm based on the geometrical aspect of the problem with O (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 75; číslo 5; s. 2648 - 2664
Hlavní autoři: Imanparast, Mahdi, Hashemi, Seyed Naser
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2019
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the problem of computing Euclidean minimum weight matching which investigates the minimum weight perfect matching in a complete geometric graph on a set of 2 n points in the plane. We propose a simple randomized approximation algorithm based on the geometrical aspect of the problem with O ( n ) expected time. The proposed algorithm computes a matching within at most 3 factors of the optimal solution. We also do some experimental tests to evaluate the performance of the proposed algorithm which indicate the efficiency of the proposed algorithm in finding the approximate matching in the practice.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-018-2673-2