Principal eigenvalues and eigenfunctions to Lane-Emden systems on general bounded domains

We prove the existence of at least a curve of principal eigenvalues for two-parameter Lane-Emden systems under Dirichlet boundary conditions for general bounded domains. The nonhomogeneous counterpart is also addressed. Part of the main results (Theorems 1.1–1.3) are based on some deep ideas introdu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Israel journal of mathematics Ročník 259; číslo 1; s. 277 - 310
Hlavní autori: Leite, Edir Junior Ferreira, Montenegro, Marcos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Jerusalem The Hebrew University Magnes Press 01.03.2024
Springer Nature B.V
Predmet:
ISSN:0021-2172, 1565-8511
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove the existence of at least a curve of principal eigenvalues for two-parameter Lane-Emden systems under Dirichlet boundary conditions for general bounded domains. The nonhomogeneous counterpart is also addressed. Part of the main results (Theorems 1.1–1.3) are based on some deep ideas introduced in the seminal paper [4] and on two fundamental tools, both new and of independent interest: Aleksandrov–Bakelman–Pucci estimates (Theorem 2.1) and Harnack–Krylov–Safonov inequalities (Theorem 5.1) associated to Lane–Emden systems in smooth domains.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-023-2487-7