Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise

This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-base...

Full description

Saved in:
Bibliographic Details
Published in:Circuits, systems, and signal processing Vol. 37; no. 5; pp. 1884 - 1906
Main Author: Ding, Jiling
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2018
Springer Nature B.V
Subjects:
ISSN:0278-081X, 1531-5878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-based iterative algorithm are proposed according to the auxiliary model identification idea and the iterative search principle. The simulation results indicate that the least squares-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model-based recursive generalized least squares algorithm. Two examples are given to test the proposed algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-017-0636-0