Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise
This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-base...
Uloženo v:
| Vydáno v: | Circuits, systems, and signal processing Ročník 37; číslo 5; s. 1884 - 1906 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0278-081X, 1531-5878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-based iterative algorithm are proposed according to the auxiliary model identification idea and the iterative search principle. The simulation results indicate that the least squares-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model-based recursive generalized least squares algorithm. Two examples are given to test the proposed algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-017-0636-0 |