Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise

This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-base...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 37; číslo 5; s. 1884 - 1906
Hlavní autor: Ding, Jiling
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2018
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers the parameter estimation of a multiple-input–output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-based iterative algorithm are proposed according to the auxiliary model identification idea and the iterative search principle. The simulation results indicate that the least squares-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model-based recursive generalized least squares algorithm. Two examples are given to test the proposed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-017-0636-0