Mamba-based Multibranch State Space Iterative Fusion Algorithm for Multisource Power Grid Survey Data
The effective integration of multisource survey data for power grids benefits designers by providing comprehensive and accurate analyses of the terrain and landforms surrounding the survey area. In this study, inspired by the Mamba concept, we propose an iterative attentional feature fusion Mamba (i...
Uloženo v:
| Vydáno v: | Sensors and materials Ročník 37; číslo 1; s. 193 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
MYU Scientific Publishing Division
01.01.2025
|
| Témata: | |
| ISSN: | 0914-4935, 2435-0869 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The effective integration of multisource survey data for power grids benefits designers by providing comprehensive and accurate analyses of the terrain and landforms surrounding the survey area. In this study, inspired by the Mamba concept, we propose an iterative attentional feature fusion Mamba (iAFF-FMA) framework that constructs a multibranch state space for iterative fusion, reducing differences between data modalities and enhancing feature interaction within the same modality. Experiments conducted with actual engineering data from ultra-high-voltage direct current (UHVDC) transmission lines demonstrate the iAFF-FMA framework's superiority over six common fusion methods. This offers a novel technical approach to the integration of power grid survey data. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0914-4935 2435-0869 |
| DOI: | 10.18494/SAM5257 |