Generalized Krasnoselskii–Mann-Type Iteration for Nonexpansive Mappings in Banach Spaces

The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings, and it is well known that the classic Krasnoselskii–Mann iteration is weakly convergent in Hilbert spaces. The weak convergence is also known even in Banach spaces. Recently, Kanzo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Operations Research Society of China (Internet) Ročník 9; číslo 1; s. 195 - 206
Hlavní autori: Zhang, You-Cai, Guo, Ke, Wang, Tao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Beijing Operations Research Society of China 01.03.2021
Springer Nature B.V
Predmet:
ISSN:2194-668X, 2194-6698
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings, and it is well known that the classic Krasnoselskii–Mann iteration is weakly convergent in Hilbert spaces. The weak convergence is also known even in Banach spaces. Recently, Kanzow and Shehu proposed a generalized Krasnoselskii–Mann-type iteration for nonexpansive mappings and established its convergence in Hilbert spaces. In this paper, we show that the generalized Krasnoselskii–Mann-type iteration proposed by Kanzow and Shehu also converges in Banach spaces. As applications, we proved the weak convergence of generalized proximal point algorithm in the uniformly convex Banach spaces.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2194-668X
2194-6698
DOI:10.1007/s40305-018-0235-1