Generalized Krasnoselskii–Mann-Type Iteration for Nonexpansive Mappings in Banach Spaces
The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings, and it is well known that the classic Krasnoselskii–Mann iteration is weakly convergent in Hilbert spaces. The weak convergence is also known even in Banach spaces. Recently, Kanzo...
Uložené v:
| Vydané v: | Journal of the Operations Research Society of China (Internet) Ročník 9; číslo 1; s. 195 - 206 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Beijing
Operations Research Society of China
01.03.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2194-668X, 2194-6698 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings, and it is well known that the classic Krasnoselskii–Mann iteration is weakly convergent in Hilbert spaces. The weak convergence is also known even in Banach spaces. Recently, Kanzow and Shehu proposed a generalized Krasnoselskii–Mann-type iteration for nonexpansive mappings and established its convergence in Hilbert spaces. In this paper, we show that the generalized Krasnoselskii–Mann-type iteration proposed by Kanzow and Shehu also converges in Banach spaces. As applications, we proved the weak convergence of generalized proximal point algorithm in the uniformly convex Banach spaces. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2194-668X 2194-6698 |
| DOI: | 10.1007/s40305-018-0235-1 |