On the Constants in Inverse Theorems for the First-Order Derivative

The known proofs of the inverse theorems in the theory of approximation by trigonometric polynomials and entire functions of exponential type are based on S.N. Bernstein’s idea to expand the function in a series with respect to the functions of its best approximation. In this paper, a new method to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Vestnik, St. Petersburg University. Mathematics Ročník 54; číslo 4; s. 334 - 344
Hlavní autor: Vinogradov, O. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.10.2021
Springer Nature B.V
Témata:
ISSN:1063-4541, 1934-7855
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The known proofs of the inverse theorems in the theory of approximation by trigonometric polynomials and entire functions of exponential type are based on S.N. Bernstein’s idea to expand the function in a series with respect to the functions of its best approximation. In this paper, a new method to prove inverse theorems is proposed. Sufficiently simple identities are established that immediately lead to the aforementioned inverse theorems, with the constants being improved. This method can be applied to derivatives of any order—not necessarily integer—as well as (with certain modifications) to the estimates of some other functionals via their best approximations. In this paper, the case of the first-order derivative of the function itself and of its trigonometrically conjugate function is considered.
AbstractList The known proofs of the inverse theorems in the theory of approximation by trigonometric polynomials and entire functions of exponential type are based on S.N. Bernstein’s idea to expand the function in a series with respect to the functions of its best approximation. In this paper, a new method to prove inverse theorems is proposed. Sufficiently simple identities are established that immediately lead to the aforementioned inverse theorems, with the constants being improved. This method can be applied to derivatives of any order—not necessarily integer—as well as (with certain modifications) to the estimates of some other functionals via their best approximations. In this paper, the case of the first-order derivative of the function itself and of its trigonometrically conjugate function is considered.
Author Vinogradov, O. L.
Author_xml – sequence: 1
  givenname: O. L.
  surname: Vinogradov
  fullname: Vinogradov, O. L.
  email: olvin@math.spb.ru
  organization: St. Petersburg State University
BookMark eNp9kE9LAzEQxYNUsK1-AG8LnlcnfzbZPUq1Wij0YO9LdpO1W9qkTtKC397UCoKipxl47zdvZkZk4LyzhFxTuKWUi7sXCpKLQlBGQQCD8owMacVFrsqiGKQ-yflRvyCjENYAhWQFH5LJwmVxZbOJdyFqF0PWu2zmDhaDzZYr69FuQ9Z5_HRNewwxX6CxmD1Y7A869gd7Sc47vQn26quOyXL6uJw85_PF02xyP89bTmXMmZWiMYpDB6wxprNNV1EhdQlpr4pBU_KWq0aJVquCy8oI0ykB3OiGVsrwMbk5jd2hf9vbEOu136NLiTWTlIECKYvkoidXiz4EtF29w36r8b2mUB9fVf96VWLUD6btYzrNu4i63_xLshMZUop7tfi909_QB_hXfAU
CitedBy_id crossref_primary_10_1134_S0037446622030053
crossref_primary_10_1007_s10958_022_05793_0
Cites_doi 10.1016/B978-0-08-009929-3.50008-7
10.1090/S1061-0022-06-00922-8
10.1090/S0002-9904-1968-11980-9
10.1515/9781400883882
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2021, Vol. 54, No. 4, pp. 334–344. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2021, Vol. 8, No. 4, pp. 559–571.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2021, Vol. 54, No. 4, pp. 334–344. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2021, Vol. 8, No. 4, pp. 559–571.
DBID AAYXX
CITATION
DOI 10.1134/S1063454121040208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1934-7855
EndPage 344
ExternalDocumentID 10_1134_S1063454121040208
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-2e64bd730f02bddfebf9146a80454920b83c37b74ca75369d4df7403dab197d3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732962300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-4541
IngestDate Thu Sep 25 00:40:03 EDT 2025
Tue Nov 18 22:45:23 EST 2025
Sat Nov 29 02:07:01 EST 2025
Fri Feb 21 02:47:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords inverse theorems
conjugate function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2e64bd730f02bddfebf9146a80454920b83c37b74ca75369d4df7403dab197d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2612070665
PQPubID 2044361
PageCount 11
ParticipantIDs proquest_journals_2612070665
crossref_primary_10_1134_S1063454121040208
crossref_citationtrail_10_1134_S1063454121040208
springer_journals_10_1134_S1063454121040208
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Vestnik, St. Petersburg University. Mathematics
PublicationTitleAbbrev Vestnik St.Petersb. Univ.Math
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References SterlinM. D.Estimates of constants in inverse theorems of the constructive theory of functionsDokl. Akad. Nauk SSSR197320912961298336196
AkhiezerN. I.Lectures on Approximation Theory1965MoscowNauka
BernsteinS. N.Collected Works1952MoscowAcad. Nauk. SSSR
ZhukV. V.Approximation of Periodic Functions1982LeningradLeningrad Univ. Press0521.42003
ShapiroH. S.Some Tauberian theorems with applications to approximation theoryBull. Am. Math. Soc.19687450050422507410.1090/S0002-9904-1968-11980-9
BernsteinS. N.Collected Works1954MoscowAcad. Nauk. SSSR
DzyadykV. K.Introduction into the Theory of Uniform Approximation of Functions by Polynomials1977MoscowNauka0481.41001
E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).
G. I. Natanson, “On the estimate of Lebesgue constants of de la Vallee–Poussin sums,” in Geometric Problems of the Theory of Functions and Sets (Kalinin Gos. Univ., Kalinin, 1986), pp. 102–107 [in Russian].
SterlinM. D.On inverse extremal problems of the constructive theory of functionsDokl. Akad. Nauk SSSR1976229550553410218
A. F. Timan, Theory of Approximation of Functions of a Real Variable (GIFML, Moscow, 1960; Pergamon, Oxford, 1963).
BariN. K.StechkinS. B.“Best approximations and differential properties of two conjugate functions,” Tr. Mosk. MatO-va.19565483522
VinogradovO. L.Sharp Jackson-type inequalities for approximation of classes of convolutions by entire functions of finite degreeSt. Petersburg Math. J.200617593633217393710.1090/S1061-0022-06-00922-8
S. N. Bernstein (5122_CR3) 1952
N. I. Akhiezer (5122_CR1) 1965
V. V. Zhuk (5122_CR7) 1982
5122_CR9
H. S. Shapiro (5122_CR8) 1968; 74
M. D. Sterlin (5122_CR4) 1976; 229
M. D. Sterlin (5122_CR6) 1973; 209
S. N. Bernstein (5122_CR13) 1954
5122_CR2
V. K. Dzyadyk (5122_CR11) 1977
N. K. Bari (5122_CR5) 1956; 5
O. L. Vinogradov (5122_CR10) 2006; 17
5122_CR12
References_xml – reference: BernsteinS. N.Collected Works1954MoscowAcad. Nauk. SSSR
– reference: ZhukV. V.Approximation of Periodic Functions1982LeningradLeningrad Univ. Press0521.42003
– reference: VinogradovO. L.Sharp Jackson-type inequalities for approximation of classes of convolutions by entire functions of finite degreeSt. Petersburg Math. J.200617593633217393710.1090/S1061-0022-06-00922-8
– reference: DzyadykV. K.Introduction into the Theory of Uniform Approximation of Functions by Polynomials1977MoscowNauka0481.41001
– reference: SterlinM. D.On inverse extremal problems of the constructive theory of functionsDokl. Akad. Nauk SSSR1976229550553410218
– reference: SterlinM. D.Estimates of constants in inverse theorems of the constructive theory of functionsDokl. Akad. Nauk SSSR197320912961298336196
– reference: AkhiezerN. I.Lectures on Approximation Theory1965MoscowNauka
– reference: ShapiroH. S.Some Tauberian theorems with applications to approximation theoryBull. Am. Math. Soc.19687450050422507410.1090/S0002-9904-1968-11980-9
– reference: BariN. K.StechkinS. B.“Best approximations and differential properties of two conjugate functions,” Tr. Mosk. MatO-va.19565483522
– reference: BernsteinS. N.Collected Works1952MoscowAcad. Nauk. SSSR
– reference: A. F. Timan, Theory of Approximation of Functions of a Real Variable (GIFML, Moscow, 1960; Pergamon, Oxford, 1963).
– reference: E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).
– reference: G. I. Natanson, “On the estimate of Lebesgue constants of de la Vallee–Poussin sums,” in Geometric Problems of the Theory of Functions and Sets (Kalinin Gos. Univ., Kalinin, 1986), pp. 102–107 [in Russian].
– ident: 5122_CR2
  doi: 10.1016/B978-0-08-009929-3.50008-7
– volume-title: Introduction into the Theory of Uniform Approximation of Functions by Polynomials
  year: 1977
  ident: 5122_CR11
– volume: 229
  start-page: 550
  year: 1976
  ident: 5122_CR4
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 17
  start-page: 593
  year: 2006
  ident: 5122_CR10
  publication-title: St. Petersburg Math. J.
  doi: 10.1090/S1061-0022-06-00922-8
– volume-title: Collected Works
  year: 1954
  ident: 5122_CR13
– ident: 5122_CR12
– volume: 209
  start-page: 1296
  year: 1973
  ident: 5122_CR6
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 74
  start-page: 500
  year: 1968
  ident: 5122_CR8
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1968-11980-9
– volume-title: Collected Works
  year: 1952
  ident: 5122_CR3
– ident: 5122_CR9
  doi: 10.1515/9781400883882
– volume: 5
  start-page: 483
  year: 1956
  ident: 5122_CR5
  publication-title: O-va.
– volume-title: Approximation of Periodic Functions
  year: 1982
  ident: 5122_CR7
– volume-title: Lectures on Approximation Theory
  year: 1965
  ident: 5122_CR1
SSID ssj0056253
Score 2.183283
Snippet The known proofs of the inverse theorems in the theory of approximation by trigonometric polynomials and entire functions of exponential type are based on S.N....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 334
SubjectTerms Analysis
Approximation
Constants
Derivatives
Entire functions
Functions (mathematics)
Identities
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Theorems
Title On the Constants in Inverse Theorems for the First-Order Derivative
URI https://link.springer.com/article/10.1134/S1063454121040208
https://www.proquest.com/docview/2612070665
Volume 54
WOSCitedRecordID wos000732962300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1934-7855
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056253
  issn: 1063-4541
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBw4gSK6JE3aIxpMHGBDbJp2q9omlSZBQevY78dJ2yGeEpzaqq5VOY4fsvMZ4DTzU2ZQdSheFBVp4tGYe5o68DPtscR3495Gt6rXC8bj8L46x13U3e51SdJZ6nLuiLgYYPLChS8s4pVNeoJlWEFvF9h5DQ-DUW1-bUBfdtVLbgG921Up81sWH53Re4T5qSjqfE13819_uQUbVWhJLktd2IYlk-_A-t0Cl7XYhU4_J_hIOmVUOCvIJCcWamNaGOKO6ZungmAc66i6EwwNad-Cc5Ir1NS5Awnfg2H3eti5odUYBZrytpxRZqRINO7kDEWvdWaSLET7GAcWfS9kXhLwlKtEiTTG3EWGWuhMCY_rOGmHSvN9aOTPuTkAEigmWYwiD_xQKI630kNuWYiWAd08a4JXizNKK4hxO-niMXKpBhfRF_E04WzxyUuJr_Ebcateo6jaakVkMdDQbknpN-G8XpP31z8yO_wT9RGsMdvN4tr4WtCYTV_NMaym89mkmJ44DXwDNy3O0A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFIAPOgX1wbs4nZoHn5Ril6RN-yjTMXEXcWPsrbRNCgOtss79fk_SdsMr6FNbmoaSnJwLOfkOwHnixFSh6Fh4ERaPI9sKmS0tAz-TNo0cU-5t2Bbdrjca-Q_FOe6szHYvtySNps7rjvCrPgYvjDtcE6900OMtwwpHg6WB-Y_9Yal-tUOfZ9W7TAO968VW5rddfDRGCw_z06aosTXNrX_95TZsFq4luc5lYQeWVLoLG505lzXbg0YvJfhIGrlXOM3IOCUatTHJFDHH9NVzRtCPNa2aY3QNrZ6Gc5IblNSZgYTvw6B5O2i0rKKMghWzuju1qHJ5JHElJzj0UiYqSnzUj6Gn6Xs-tSOPxUxEgschxi6uL7lMBLeZDKO6LyQ7gEr6kqpDIJ6gLg19T0PRuGB469rYW-KjZkAzT6tgl8MZxAViXFe6eApMqMF48GV4qnAx_-Q152v81rhWzlFQLLUs0Aw01Fuu61ThspyTxesfOzv6U-szWGsNOu2gfde9P4Z1qjNbTEpfDSrTyZs6gdV4Nh1nk1Mjje_yidG0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMAPnSL64Lc4P_PgkxLWJWnaPspmUZzbYGPsrbRNCgOtY637-03SdsNPEJ_a0jSU5HK54y6_A7hK7JhIJTpYXRzM4sjCIbUENvAzYZHINuXeRh2n23XHY69f1jnNqmz3KiRZnGnQlKY0b0xFUtYgYY2BcmQos5mmX2kHyF2FNabz6LW7PhhVqlgb90WGPaca7t0sw5rfdvFxY1pam58CpGbf8Xf-_ce7sF2anOi2kJE9WJHpPmw9LXit2QG0eilSj6hVWIt5hiYp0giOWSaROb4vXzKk7FvTyp8okxH3NLQTtZUEzw08_BCG_t2wdY_L8go4pk2eYyI5i4Ra4YmaEiESGSWe0puhq6l8HrEil8bUiRwWh8qn4Z5gInGYRUUYNT1H0COopa-pPAbkOoST0HM1LI05VN1yS_WWeEpjqO2f1MGqhjaIS_S4roDxHBgXhLLgy_DU4XrxybTgbvzW-Kyar6Bcglmg2WhKn3Fu1-Gmmp_l6x87O_lT60vY6Lf9oPPQfTyFTaITXkym3xnU8tmbPIf1eJ5PstmFEcx3dlPamA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Constants+in+Inverse+Theorems+for+the+First-Order+Derivative&rft.jtitle=Vestnik%2C+St.+Petersburg+University.+Mathematics&rft.au=Vinogradov%2C+O.+L.&rft.date=2021-10-01&rft.issn=1063-4541&rft.eissn=1934-7855&rft.volume=54&rft.issue=4&rft.spage=334&rft.epage=344&rft_id=info:doi/10.1134%2FS1063454121040208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1063454121040208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-4541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-4541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-4541&client=summon