Improved axis rotation MTD algorithm and its analysis

In radar detection, weak targets’ range migration often happens during long time integration. To detect weak targets effectively, an improved axis rotation moving target detection (IAR-MTD) is introduced and analysed in detail. IAR-MTD can detect weak targets by compensating the linear part of range...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multidimensional systems and signal processing Ročník 30; číslo 2; s. 885 - 902
Hlavní autoři: Rao, Xuan, Zhong, Tiantian, Tao, Haihong, Xie, Jian, Su, Jia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2019
Springer Nature B.V
Témata:
ISSN:0923-6082, 1573-0824
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In radar detection, weak targets’ range migration often happens during long time integration. To detect weak targets effectively, an improved axis rotation moving target detection (IAR-MTD) is introduced and analysed in detail. IAR-MTD can detect weak targets by compensating the linear part of range migration via the axis rotation and coherently integrating the echoes via moving target detection (MTD). Then the realization of IAR-MTD is derived. Furthermore, the coherent integration gain of IAR-MTD is analysed, which is better than that of traditional MTD, Radon–Fourier transform (RFT) and Keystone transform (KT). Subsequently, to decrease the computational complexity of IAR-MTD, some suggestions are given. Besides, unambiguous Doppler estimation, the tolerance of acceleration, and the multi-target detection of IAR-MTD are analysed respectively. Finally, some numerical experiments are provided to show the performance of IAR-MTD in different conditions and testify the advantages of IAR-MTD over MTD, RFT and KT. The result indicates that IAR-MTD may effectively detect the weak moving targets with constant radial velocity and it is compatible with MTD radar system.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0923-6082
1573-0824
DOI:10.1007/s11045-018-0588-y