Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming
Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient ( C d ). The aim of this study is accurate determination of the C d in triangular labyrinth...
Saved in:
| Published in: | Neural computing & applications Vol. 29; no. 11; pp. 983 - 989 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.06.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient (
C
d
). The aim of this study is accurate determination of the
C
d
in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of
C
d
predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination (
R
2
), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and
δ
have been used. Results showed that
R
2
values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and
δ
values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model. |
|---|---|
| AbstractList | Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient (Cd). The aim of this study is accurate determination of the Cd in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of Cd predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination (R2), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model. Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient ( C d ). The aim of this study is accurate determination of the C d in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of C d predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination ( R 2 ), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R 2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model. |
| Author | Bonakdari, Hossein Shamshirband, Shahabodin Karami, Hojat Karimi, Sohrab |
| Author_xml | – sequence: 1 givenname: Hojat surname: Karami fullname: Karami, Hojat email: hkarami@semnan.ac.ir organization: Department of Civil Engineering, Semnan University – sequence: 2 givenname: Sohrab surname: Karimi fullname: Karimi, Sohrab organization: Department of Civil Engineering, Semnan University – sequence: 3 givenname: Hossein surname: Bonakdari fullname: Bonakdari, Hossein organization: Department of Civil Engineering, Razi University – sequence: 4 givenname: Shahabodin surname: Shamshirband fullname: Shamshirband, Shahabodin organization: Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya |
| BookMark | eNp9kMFO3DAQhi1EJRbKA3CzxLVp7Tj2Zo8IQVsJqT1wt2btSdaQODB2xPIUfeU6bKVKSO1pNDP_N__oP2XHcYrI2IUUn6UQ6y9JCF3LSkhT1bptq_0RW8lGqUoJ3R6zldg0ZWsadcJOU3oQQjSm1Sv26yehDy6H2HMfktsB9cjdhF0XXMCY-dTxTAFiPw9AfIDtK4WYd_wFA_E5LSDuM-GIfECguAxGcLsQ8RMHymE5BAOPONNbyS8TPXKInvdYuuD4E009wTgW9CP70MGQ8PxPPWP3tzf319-qux9fv19f3VVOSZMr6VWz9V7WTWsUrp2swSkDTnqj18op1blON5vWgzRdK7da48Y0CEZLXztUZ-zycLZYP8-Ysn2YZorF0dZCGaU2RuqiWh9UjqaUCDvrQoYcppgJwmClsEv49hC-LeHbJXy7L6R8Rz5RGIFe_8vUByYVbeyR_v70b-g3yRedlg |
| CitedBy_id | crossref_primary_10_1061_JOEEDU_EEENG_7766 crossref_primary_10_1109_TITS_2020_3004918 crossref_primary_10_1038_s41598_023_39272_6 crossref_primary_10_1155_2018_8467413 crossref_primary_10_1007_s13349_022_00603_2 crossref_primary_10_1007_s13762_023_05322_9 crossref_primary_10_1140_epjs_s11734_021_00394_5 crossref_primary_10_1016_j_flowmeasinst_2023_102468 crossref_primary_10_1061__ASCE_IR_1943_4774_0001484 crossref_primary_10_2166_ws_2022_393 crossref_primary_10_1016_j_eswa_2019_03_002 crossref_primary_10_1016_j_flowmeasinst_2021_102108 crossref_primary_10_1007_s00500_025_10856_w crossref_primary_10_1016_j_mtcomm_2020_101950 crossref_primary_10_1007_s00500_022_07614_7 crossref_primary_10_1016_j_flowmeasinst_2019_101681 crossref_primary_10_1007_s00521_018_3956_5 crossref_primary_10_1016_j_flowmeasinst_2019_04_005 crossref_primary_10_2166_hydro_2023_260 crossref_primary_10_1016_j_flowmeasinst_2019_03_003 crossref_primary_10_1016_j_flowmeasinst_2021_102079 crossref_primary_10_1080_19942060_2021_1934546 crossref_primary_10_1007_s00500_022_07073_0 crossref_primary_10_3390_app10124239 crossref_primary_10_1007_s00500_022_07041_8 crossref_primary_10_1007_s40808_021_01081_z crossref_primary_10_1080_19942060_2021_2002721 crossref_primary_10_1016_j_compeleceng_2020_106624 crossref_primary_10_1016_j_flowmeasinst_2016_11_010 crossref_primary_10_1016_j_flowmeasinst_2021_102119 crossref_primary_10_1016_j_flowmeasinst_2020_101740 crossref_primary_10_1007_s11269_023_03527_8 crossref_primary_10_1007_s00477_024_02739_7 crossref_primary_10_1016_j_flowmeasinst_2025_103050 crossref_primary_10_1155_2023_8272566 crossref_primary_10_2166_hydro_2024_303 crossref_primary_10_1016_j_flowmeasinst_2024_102563 crossref_primary_10_1007_s13201_019_1026_5 crossref_primary_10_2166_hydro_2023_096 crossref_primary_10_1016_j_flowmeasinst_2019_101573 crossref_primary_10_2166_ws_2022_378 crossref_primary_10_1016_j_flowmeasinst_2025_102924 crossref_primary_10_3390_photonics6040111 crossref_primary_10_3390_a17090388 crossref_primary_10_1007_s00521_021_05996_7 crossref_primary_10_1016_j_flowmeasinst_2024_102687 crossref_primary_10_1016_j_flowmeasinst_2024_102686 crossref_primary_10_1016_j_flowmeasinst_2023_102403 crossref_primary_10_3390_w16020289 crossref_primary_10_1016_j_eswa_2022_119480 crossref_primary_10_1038_s41598_025_03812_z crossref_primary_10_3390_app9163221 crossref_primary_10_1080_19942060_2021_1944913 crossref_primary_10_1007_s00521_019_04375_7 crossref_primary_10_1007_s11831_025_10274_z |
| Cites_doi | 10.1016/j.flowmeasinst.2011.04.009 10.1016/j.eswa.2011.09.035 10.1016/j.advengsoft.2010.03.001 10.1016/0893-6080(91)90009-T 10.1016/S0893-6080(05)80131-5 10.1061/(ASCE)0733-9437(1994)120:4(742) 10.1109/TNN.2006.880583 10.1061/(ASCE)IR.1943-4774.0000112 10.1016/j.biosystemseng.2010.01.001 10.1080/02626669809492102 10.1061/(ASCE)0733-9372(2000)126:5(456) 10.1016/j.flowmeasinst.2011.01.006 10.1680/wama.11.00008 10.1016/j.neucom.2005.12.126 10.1061/(ASCE)0733-9429(2005)131:3(184) 10.1109/72.655045 10.1016/j.advengsoft.2009.09.006 10.1109/TNN.2003.809401 10.1109/72.557662 10.1007/978-1-4471-0123-9_54 10.1061/JYCEAJ.0003188 10.1061/JYCEAJ.0004610 |
| ContentType | Journal Article |
| Copyright | The Natural Computing Applications Forum 2016 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: The Natural Computing Applications Forum 2016 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-016-2588-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 989 |
| ExternalDocumentID | 10_1007_s00521_016_2588_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c316t-1d34bdd124863e7c12ac36ac1d6573c33fcf5498da16f81b55e964ea651d2ce3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431785700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 16:24:52 EST 2025 Tue Nov 18 21:27:16 EST 2025 Sat Nov 29 02:59:04 EST 2025 Fri Feb 21 02:34:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Artificial neural network Discharge coefficient Extreme learning machine Genetic programming Weir |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-1d34bdd124863e7c12ac36ac1d6573c33fcf5498da16f81b55e964ea651d2ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2036339615 |
| PQPubID | 2043988 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2036339615 crossref_citationtrail_10_1007_s00521_016_2588_x crossref_primary_10_1007_s00521_016_2588_x springer_journals_10_1007_s00521_016_2588_x |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2018 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Subramanya, Awasthy (CR8) 1972; 98 Kisi, Emiroglu, Bilhan, Guven (CR25) 2012; 39 Kumar, Ahmad, Mansoor (CR4) 2011; 22 Emiroglu, Kisi, Bilhan (CR11) 2010; 41 Swamee, Santosh, Masoud (CR9) 1994; 120 Huang, Zhu, Siew (CR15) 2004; 2 Khan, Azamathulla, Tufail, AbGhani (CR27) 2012; 165 Tamura, Tateishi (CR19) 1997; 8 Emiroglu, Kaya, Agaccioglu (CR13) 2010; 136 Hornik (CR16) 1991; 4 Leshno, Lin, Pinkus, Schocken (CR17) 1993; 6 Dianhui, Huang (CR30) 2005; 3 El-Khashab, Smith (CR1) 1976; 102 Bagheri, Heidarpour (CR10) 2010; 105 Bonakdari, Baghalian, Nazari, Fazli (CR12) 2011; 5 Smith (CR23) 1993 Liang, Huang, Rong, Saratchandran, Sundararajan (CR22) 2006; 17 Emiroglu, Kaya, Agaccioglu (CR7) 2010; 136 Wormleaton, Tsang (CR5) 2000; 126 Koza (CR26) 1992 Ferreira (CR29) 2001; 13 Borghei, Parvaneh (CR3) 2011; 22 Bilhan, Emiroglu, Kisi (CR14) 2010; 41 Dawson, Wilby (CR24) 1998; 43 CR28 Huang, Zhu, Siew (CR21) 2006; 70 Huang, Babri (CR18) 1998; 9 Emiroglu, Baylar (CR6) 2005; 131 Huang (CR20) 2003; 14 De Marchi (CR2) 1934; 11 S Kumar (2588_CR4) 2011; 22 NY Liang (2588_CR22) 2006; 17 GB Huang (2588_CR15) 2004; 2 M Leshno (2588_CR17) 1993; 6 ME Emiroglu (2588_CR6) 2005; 131 A El-Khashab (2588_CR1) 1976; 102 GB Huang (2588_CR20) 2003; 14 C Ferreira (2588_CR29) 2001; 13 M Smith (2588_CR23) 1993 ME Emiroglu (2588_CR7) 2010; 136 O Bilhan (2588_CR14) 2010; 41 O Kisi (2588_CR25) 2012; 39 K Hornik (2588_CR16) 1991; 4 ME Emiroglu (2588_CR11) 2010; 41 ME Emiroglu (2588_CR13) 2010; 136 SM Borghei (2588_CR3) 2011; 22 GB Huang (2588_CR18) 1998; 9 CW Dawson (2588_CR24) 1998; 43 PK Swamee (2588_CR9) 1994; 120 G Marchi De (2588_CR2) 1934; 11 JR Koza (2588_CR26) 1992 S Tamura (2588_CR19) 1997; 8 W Dianhui (2588_CR30) 2005; 3 K Subramanya (2588_CR8) 1972; 98 2588_CR28 GB Huang (2588_CR21) 2006; 70 PR Wormleaton (2588_CR5) 2000; 126 H Bonakdari (2588_CR12) 2011; 5 M Khan (2588_CR27) 2012; 165 S Bagheri (2588_CR10) 2010; 105 |
| References_xml | – volume: 22 start-page: 370 issue: 5 year: 2011 end-page: 376 ident: CR3 article-title: Discharge characteristics of a modified oblique side weir in subcritical flow publication-title: J Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2011.04.009 – volume: 39 start-page: 3454 year: 2012 end-page: 3460 ident: CR25 article-title: Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.035 – volume: 41 start-page: 831 issue: 6 year: 2010 end-page: 837 ident: CR14 article-title: Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2010.03.001 – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: CR16 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw doi: 10.1016/0893-6080(91)90009-T – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: CR17 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80131-5 – volume: 3 start-page: 1406 year: 2005 end-page: 1411 ident: CR30 article-title: Protein sequence classification using extreme learning machine publication-title: Proc Int Jt Conf Neural Netw – volume: 11 start-page: 849 issue: 11 year: 1934 end-page: 860 ident: CR2 article-title: Essay on the performance of lateral weirs publication-title: L’Energia Electtrica – volume: 120 start-page: 742 issue: 4 year: 1994 end-page: 755 ident: CR9 article-title: Side weir analysis using elementary discharge coefficient publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(1994)120:4(742) – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: CR22 article-title: A fast and accurate on-line sequential learning algorithm for feedforward networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – volume: 136 start-page: 37 issue: 1 year: 2010 end-page: 46 ident: CR13 article-title: Discharge capacity of labyrinth weir located on a straight channel publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000112 – volume: 105 start-page: 423 issue: 3 year: 2010 end-page: 427 ident: CR10 article-title: Application of free vortex theory to estimate discharge coefficient for sharp-crested weirs publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2010.01.001 – volume: 102 start-page: 1255 year: 1976 end-page: 1268 ident: CR1 article-title: Experimental investigation of flow over side weirs publication-title: ASCE J Hydraul Div – volume: 43 start-page: 47 issue: 1 year: 1998 end-page: 66 ident: CR24 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrol Sci J doi: 10.1080/02626669809492102 – volume: 126 start-page: 456 issue: 5 year: 2000 end-page: 465 ident: CR5 article-title: Aeration performance of rectangular plan form labyrinth weirs publication-title: ASCE J Environ Eng doi: 10.1061/(ASCE)0733-9372(2000)126:5(456) – year: 1992 ident: CR26 publication-title: Genetic programming: on the programming of computers by means of natural selection – volume: 13 start-page: 87 issue: 2 year: 2001 end-page: 129 ident: CR29 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst – year: 1993 ident: CR23 publication-title: Neural Netw for statistical modeling – volume: 22 start-page: 175 issue: 3 year: 2011 end-page: 180 ident: CR4 article-title: A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs publication-title: J Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2011.01.006 – volume: 165 start-page: 481 issue: 9 year: 2012 end-page: 493 ident: CR27 article-title: Bridge pier scour prediction by gene expression programming publication-title: Proc Inst Civ Eng Water Manag doi: 10.1680/wama.11.00008 – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: CR21 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 98 start-page: 1 issue: 1 year: 1972 end-page: 10 ident: CR8 article-title: Spatially varied flow over side weirs publication-title: ASCE J Hydraul Div – volume: 5 start-page: 384 issue: 3 year: 2011 end-page: 396 ident: CR12 article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm publication-title: Eng Appl Comput Fluid Mech – volume: 131 start-page: 184 issue: 3 year: 2005 end-page: 189 ident: CR6 article-title: Influence of included angle and sill slope on air entrainment of triangular plan form labyrinth weirs publication-title: ASCE J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2005)131:3(184) – volume: 2 start-page: 985 year: 2004 end-page: 990 ident: CR15 article-title: Extreme learning machine: a new learning scheme of feed forward neural networks publication-title: Int Jt Conf Neural Netw – volume: 9 start-page: 224 issue: 1 year: 1998 end-page: 229 ident: CR18 article-title: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions publication-title: IEEE Trans Neural Netw doi: 10.1109/72.655045 – volume: 136 start-page: 37 issue: 1 year: 2010 end-page: 46 ident: CR7 article-title: Discharge capacity of labyrinth weir located on a straight channel publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000112 – volume: 41 start-page: 154 issue: 2 year: 2010 end-page: 160 ident: CR11 article-title: Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2009.09.006 – volume: 14 start-page: 274 issue: 2 year: 2003 end-page: 281 ident: CR20 article-title: Learning capability and storage capacity of two hidden-layer feedforward networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2003.809401 – ident: CR28 – volume: 8 start-page: 251 issue: 2 year: 1997 end-page: 255 ident: CR19 article-title: Capabilities of a four-layered feedforward neural network: four layers versus three publication-title: IEEE Trans Neural Networks doi: 10.1109/72.557662 – volume: 6 start-page: 861 year: 1993 ident: 2588_CR17 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80131-5 – volume-title: Genetic programming: on the programming of computers by means of natural selection year: 1992 ident: 2588_CR26 – volume: 22 start-page: 175 issue: 3 year: 2011 ident: 2588_CR4 publication-title: J Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2011.01.006 – volume: 5 start-page: 384 issue: 3 year: 2011 ident: 2588_CR12 publication-title: Eng Appl Comput Fluid Mech – volume: 17 start-page: 1411 year: 2006 ident: 2588_CR22 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – volume: 165 start-page: 481 issue: 9 year: 2012 ident: 2588_CR27 publication-title: Proc Inst Civ Eng Water Manag doi: 10.1680/wama.11.00008 – volume: 11 start-page: 849 issue: 11 year: 1934 ident: 2588_CR2 publication-title: L’Energia Electtrica – ident: 2588_CR28 doi: 10.1007/978-1-4471-0123-9_54 – volume: 136 start-page: 37 issue: 1 year: 2010 ident: 2588_CR13 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000112 – volume: 98 start-page: 1 issue: 1 year: 1972 ident: 2588_CR8 publication-title: ASCE J Hydraul Div doi: 10.1061/JYCEAJ.0003188 – volume-title: Neural Netw for statistical modeling year: 1993 ident: 2588_CR23 – volume: 102 start-page: 1255 year: 1976 ident: 2588_CR1 publication-title: ASCE J Hydraul Div doi: 10.1061/JYCEAJ.0004610 – volume: 22 start-page: 370 issue: 5 year: 2011 ident: 2588_CR3 publication-title: J Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2011.04.009 – volume: 120 start-page: 742 issue: 4 year: 1994 ident: 2588_CR9 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(1994)120:4(742) – volume: 2 start-page: 985 year: 2004 ident: 2588_CR15 publication-title: Int Jt Conf Neural Netw – volume: 4 start-page: 251 year: 1991 ident: 2588_CR16 publication-title: Neural Netw doi: 10.1016/0893-6080(91)90009-T – volume: 131 start-page: 184 issue: 3 year: 2005 ident: 2588_CR6 publication-title: ASCE J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2005)131:3(184) – volume: 14 start-page: 274 issue: 2 year: 2003 ident: 2588_CR20 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2003.809401 – volume: 41 start-page: 831 issue: 6 year: 2010 ident: 2588_CR14 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2010.03.001 – volume: 105 start-page: 423 issue: 3 year: 2010 ident: 2588_CR10 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2010.01.001 – volume: 9 start-page: 224 issue: 1 year: 1998 ident: 2588_CR18 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.655045 – volume: 43 start-page: 47 issue: 1 year: 1998 ident: 2588_CR24 publication-title: Hydrol Sci J doi: 10.1080/02626669809492102 – volume: 126 start-page: 456 issue: 5 year: 2000 ident: 2588_CR5 publication-title: ASCE J Environ Eng doi: 10.1061/(ASCE)0733-9372(2000)126:5(456) – volume: 39 start-page: 3454 year: 2012 ident: 2588_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.035 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 2588_CR29 publication-title: Complex Syst – volume: 41 start-page: 154 issue: 2 year: 2010 ident: 2588_CR11 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2009.09.006 – volume: 8 start-page: 251 issue: 2 year: 1997 ident: 2588_CR19 publication-title: IEEE Trans Neural Networks doi: 10.1109/72.557662 – volume: 3 start-page: 1406 year: 2005 ident: 2588_CR30 publication-title: Proc Int Jt Conf Neural Netw – volume: 136 start-page: 37 issue: 1 year: 2010 ident: 2588_CR7 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000112 – volume: 70 start-page: 489 year: 2006 ident: 2588_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 |
| SSID | ssj0004685 |
| Score | 2.3907163 |
| SecondaryResourceType | review_article |
| Snippet | Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 983 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Canals Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Discharge coefficient Genetic algorithms Image Processing and Computer Vision Learning theory Neural networks Predictions Probability and Statistics in Computer Science Review Root-mean-square errors Statistical methods Test procedures Training Weirs |
| Title | Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming |
| URI | https://link.springer.com/article/10.1007/s00521-016-2588-x https://www.proquest.com/docview/2036339615 |
| Volume | 29 |
| WOSCitedRecordID | wos000431785700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R4NBLgULV5bGaAyfaSDiOneQICMRptQKEUC-RYzuAVLIou33wK_jLzHiTpVSABKccYluWZ-wZe76ZD2Db5NapmGHlHP9PjKRzsBRVRL6zEcaRRY5NIJtIB4Ps4iIftnnc4w7t3oUkw0k9S3bjF0y--uooViRechwXyNplzNdwcnr-TzJk4OGkawtDehLZhTKfG-KpMXr0MP8LigZbc7T0rlkuw6fWtcS9qS6swJyvP8NSR9uA7S5ehfthw9EZxjsjJ-VyrSSPduRDNQkyQjiqkNk8aqapb5D05I7mMLnCP_66QUbKXyKd6fyyiC3rxCXeBFSm_46si9OyFMjFMsMnQM3R1A5JXzltEltc2A11XYOzo8Ozg-Oo5WWIrBR6Egknk9I58gwyLX1qRWys1MYKp1UqrZSVrejamTkjdEVusVI-14k3WgkXWy-_wHw9qv1XwFxKnaXWK1uJpEzLstJOOO8zq8tESd2D3U4-hW1rljN1xs9iVm05rHfBODVe7-JvD3ZmXW6nBTtea7zZCb1o9-644NCslDm5ej341gn58feLg62_qfUGfCTfK5uizjZhftL88luwaH9PrsdNHxb2DwfDkz58GKof_aDgD_ft98c |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6igl58i-tzDp7UgmnatD2KuCjqIrqIt5ImqQrale76-hX-ZWey7a6KCnrqoUkImUnmS-abGcY2VaJN6BOtnPz_gRJ4DmY89xA7K64MWmRfuWITUasVX10lZ1Ucd7dmu9cuSXdSD4Ld6AWTrr7S80MULwLHsQANFiXMP7-4_BAM6epw4rWFKD2BqF2Z3w3x2RgNEeYXp6izNc3pf81yhk1V0BL2-rowy0ZsMcem67INUO3iefZ2VpJ3hvjOQEG5lCvJgu5Yl00CjRB0cqBqHgWVqS8B9eQV59C7gWd7WwIx5a8Bz3R6WYSq6sQ13DtWpt0B0sV-WgqgZJnu46jmoAoDqK8UNgkVL-weuy6wdvOgvX_oVXUZPC247HnciCAzBpFBLIWNNPeVFlJpbmQYCS1ErnO8dsZGcZkjLA5Dm8jAKhly42srFtlo0SnsEoNECBlH2oY650EWZVkuDTfWxlpmQShkg-3W8kl1lbOcSmfcpYNsy269U-Kp0XqnLw22Nejy0E_Y8Vvj1VroabV3uym5ZoVIEOo12HYt5OHvHwdb_lPrDTZx2D49SU-OWscrbBJxWNxnoK2y0V75aNfYuH7q3XbLdafe7wLD-BE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLambkK7UH6KQoF34MSIiuPYSY7ToNoEqioxod4ix3a6SmtapdnY_gr-5b3nJB1DgIR2yiG2E9nP9me_772PsXc6NVaGRCsn_3-kBa6DOS8CxM6aa4s7cqi92EQ8mSSzWTptdU43Hdu9c0k2MQ2UpamsR2tbjLaBb3SbScdgFYQShxpB5G5EPHo6rn_7_ktgpNfkxCMM0Xsi0bk1_9TE3Y3pFm3-5iD1-864f-8_fsQetpATDhsbecx2XPmE9Ts5B2hn91P2c1qR14Z40EDBupRDyYFZOZ9lAj8FqwJI5aMk-foK0H6u8X_qM_jhFhUQg34OuNbTjSO0ahRzWHq2pvsAZKNNugqgJJr-4SnooEsLaMcUTgktX2yJVZ-x0_Hn06PjoNVrCIzgqg64FVFuLSKGRAkXGx5qI5Q23CoZCyNEYQo8jiZWc1UgXJbSpSpyWkluQ-PEc9YrV6V7wSAVQiWxcdIUPMrjPC-U5da5xKg8kkIN2MdurDLT5jInSY3zbJuF2fd3Rvw16u_sasDeb6usm0Qe_yo87Awga-f0JiOXrRApQsABO-gG_Pb1Xxt7-V-l37IH00_j7OvJ5Msrto_wLGmIaUPWq6sL95rtmct6saneeEu_AVFlAQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+discharge+coefficient+of+triangular+labyrinth+weir+using+extreme+learning+machine%2C+artificial+neural+network+and+genetic+programming&rft.jtitle=Neural+computing+%26+applications&rft.au=Karami%2C+Hojat&rft.au=Karimi%2C+Sohrab&rft.au=Bonakdari%2C+Hossein&rft.au=Shamshirband%2C+Shahabodin&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=29&rft.issue=11&rft.spage=983&rft.epage=989&rft_id=info:doi/10.1007%2Fs00521-016-2588-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |