Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a recently proposed algorithm which is a research focus in the field of multi-objective evolutionary optimization. It decomposes a multi-objective problem into subproblems by mathematic programming methods and applies evolutio...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Vol. 22; no. 12; pp. 3997 - 4012
Main Authors: Zhang, Chunjiang, Tan, Kay Chen, Lee, Loo Hay, Gao, Liang
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer Nature B.V
Subjects:
ISSN:1432-7643, 1433-7479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a recently proposed algorithm which is a research focus in the field of multi-objective evolutionary optimization. It decomposes a multi-objective problem into subproblems by mathematic programming methods and applies evolutionary algorithms to optimize the subproblems simultaneously. MOEA/D is good at finding Pareto solutions which are evenly distributed. However, it can be improved for problems with discontinuous Pareto fronts (PF). Many solutions will assemble in breakpoints in this situation. A method for adjusting weight vectors for bi-objective optimization problems with discontinuous PF is proposed. Firstly, this method detects the weight vectors which need to be adjusted using a property of MOEA/D. Secondly, the reserved vectors are divided into several subsets. Thirdly, after calculating the ideal number of vectors in each subset, vectors are adjusted evenly. Lastly, the corresponding solutions are updated by a linear interpolation. Numerical experiment shows the proposed method obtains good diversity and convergence on approached PF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-017-2609-4