EDClust: an EM–MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics Ročník 38; číslo 10; s. 2692 - 2699
Hlavní autori: Wei, Xin, Li, Ziyi, Ji, Hongkai, Wu, Hao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 13.05.2022
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Motivation Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects. One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a significant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations. Results We develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type heterogeneity, subject heterogeneity and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of EDClust compared to existing methods. Availability and implementation The R package is freely available at https://github.com/weix21/EDClust. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects. One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a significant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations. We develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type heterogeneity, subject heterogeneity, and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of EDClust compared to existing methods. The R package is freely available at https://github.com/weix21/EDClust. Supplementary data are available at Bioinformatics online.
Abstract Motivation Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects. One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a significant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations. Results We develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type heterogeneity, subject heterogeneity and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of EDClust compared to existing methods. Availability and implementation The R package is freely available at https://github.com/weix21/EDClust. Supplementary information Supplementary data are available at Bioinformatics online.
Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects. One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a significant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations.MOTIVATIONSingle-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects. One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a significant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations.We develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type heterogeneity, subject heterogeneity and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of EDClust compared to existing methods.RESULTSWe develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type heterogeneity, subject heterogeneity and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of EDClust compared to existing methods.The R package is freely available at https://github.com/weix21/EDClust.AVAILABILITY AND IMPLEMENTATIONThe R package is freely available at https://github.com/weix21/EDClust.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Wei, Xin
Li, Ziyi
Wu, Hao
Ji, Hongkai
Author_xml – sequence: 1
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
– sequence: 2
  givenname: Ziyi
  surname: Li
  fullname: Li, Ziyi
– sequence: 3
  givenname: Hongkai
  surname: Ji
  fullname: Ji, Hongkai
– sequence: 4
  givenname: Hao
  orcidid: 0000-0003-1269-7354
  surname: Wu
  fullname: Wu, Hao
  email: hao.wu@emory.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35323889$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOGzEUhi2UioTQV0Besplijz0XV2yiNBQkAhKia8u3KUYzdrA9C3Z9h74hT1KHJIt2U1a-ff_5j89_AibOOwPAGUZfMGLkQlpvXefDIJJV8UImoXDdHoEZpjUqSlSxSd6Tuiloi8gUnMT4jFCFKaXHYEoqUpK2ZTOgV9-W_RjTVygcXK3ffv1er-HTqwxWw8GkJ69hdoHK9D1UW9AE635C6-Aw9sluelPEUT4blWDMD_n4jj7cLWA0L6NxKt-egk-d6KP5vF_n4MfV6nF5Xdzef79ZLm4LRXLzRamR7LCQmsqaaFm2tJFKda2hXSNRJUqj20ZgzVBHVUUrJBvcMYVJK5XJXyNzcL6ruwk-e8fEBxu3_Qhn_Bh5Wde0YYyVLKNne3SUg9F8E-wgwis_TCYDlztABR9jMB1XNuVhe5eCsD3HiG-D4H8HwfdBZHn9j_zg8F8h3gn9uPmo5g-uuKh6
CitedBy_id crossref_primary_10_1088_2632_2153_acd7c3
crossref_primary_10_1093_bib_bbad216
crossref_primary_10_1007_s11427_023_2561_0
Cites_doi 10.1038/nbt.3192
10.1016/j.cell.2019.05.031
10.1038/nmeth.1778
10.1038/s41598-019-46932-z
10.1038/nmeth.4236
10.1093/bib/bbab034
10.1038/nprot.2013.046
10.1126/science.aav8130
10.1038/s41467-018-07234-6
10.1038/s41576-018-0088-9
10.3389/fgene.2019.00317
10.1371/journal.pone.0089694
10.1101/gr.254557.119
10.1038/nbt.3102
10.1198/jcgs.2010.09014
10.1186/s13059-019-1850-9
10.1198/0003130042836
10.1038/s41467-020-16905-2
10.1038/srep39921
10.1038/nmeth.2639
10.1038/nbt.4096
10.1101/gr.271874.120
10.1093/biostatistics/kxx053
10.1093/nar/gkw430
10.1186/s13059-016-0938-8
10.1093/bib/bbz062
10.1109/TAC.1974.1100705
10.1039/C7LC90070H
10.1214/aos/1176344136
10.1016/j.cell.2019.05.006
10.1080/00949658908811178
10.1038/s41592-019-0619-0
10.1080/01621459.1971.10482356
10.1093/nargab/lqaa078
10.1016/j.cels.2016.08.011
10.1016/j.cell.2021.04.048
10.1111/j.2517-6161.1977.tb01600.x
10.1146/annurev.genet.36.050802.093940
10.21105/joss.01284
10.1038/nbt.4091
10.1016/j.cell.2015.05.002
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
– notice: The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btac168
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2699
ExternalDocumentID 35323889
10_1093_bioinformatics_btac168
10.1093/bioinformatics/btac168
Genre Journal Article
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG010889
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABEJV
ABGNP
ABJNI
ABNGD
ABNKS
ABPTD
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACPQN
ACUFI
ACUKT
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROZ
RXO
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEUO
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KOP
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
ROX
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
ADRIX
AFXEN
BCRHZ
M49
NPM
7X8
ID FETCH-LOGICAL-c3168-2d0bf1abd4b63db2847bccf8e4f7b05a2ed87a1d90f4c5450b71f9c138bce5143
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 07:57:55 EDT 2025
Wed Feb 19 02:24:17 EST 2025
Sat Nov 29 03:49:23 EST 2025
Tue Nov 18 22:32:58 EST 2025
Wed Apr 02 07:04:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3168-2d0bf1abd4b63db2847bccf8e4f7b05a2ed87a1d90f4c5450b71f9c138bce5143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1269-7354
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9113373
PMID 35323889
PQID 2664799929
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2664799929
pubmed_primary_35323889
crossref_citationtrail_10_1093_bioinformatics_btac168
crossref_primary_10_1093_bioinformatics_btac168
oup_primary_10_1093_bioinformatics_btac168
PublicationCentury 2000
PublicationDate 20220513
PublicationDateYYYYMMDD 2022-05-13
PublicationDate_xml – month: 05
  year: 2022
  text: 20220513
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jindal (2023020109111058100_btac168-B13) 2018; 9
Stuart (2023020109111058100_btac168-B32) 2019; 177
Kiselev (2023020109111058100_btac168-B14) 2017; 14
Vinh (2023020109111058100_btac168-B39) 2010; 11
Hunter (2023020109111058100_btac168-B11) 2004; 58
Qi (2023020109111058100_btac168-B25) 2020; 21
Velmeshev (2023020109111058100_btac168-B38) 2019; 364
Su (2023020109111058100_btac168-B33) 2021; 22
Picelli (2023020109111058100_btac168-B24) 2013; 10
Schwarz (2023020109111058100_btac168-B30) 1978; 6
Ronning (2023020109111058100_btac168-B27) 1989; 32
Haghverdi (2023020109111058100_btac168-B7) 2018; 36
Zhang (2023020109111058100_btac168-B46) 2020; 2
Tang (2023020109111058100_btac168-B35) 2015
Zhou (2023020109111058100_btac168-B47) 2010; 19
Dempster (2023020109111058100_btac168-B6) 1977; 39
Hashimshony (2023020109111058100_btac168-B9) 2016; 17
Kivioja (2023020109111058100_btac168-B16) 2011; 9
Kiselev (2023020109111058100_btac168-B15) 2019; 20
Ji (2023020109111058100_btac168-B12) 2016; 44
Rand (2023020109111058100_btac168-B26) 1971; 66
Mazutis (2023020109111058100_btac168-B23) 2013; 8
Buettner (2023020109111058100_btac168-B3) 2015; 33
Hicks (2023020109111058100_btac168-B10) 2018; 19
Chen (2023020109111058100_btac168-B5) 2019; 10
Wohnhaas (2023020109111058100_btac168-B44) 2019; 9
Akaike (2023020109111058100_btac168-B1) 1974; 19
Tran (2023020109111058100_btac168-B36) 2020; 21
Hao (2023020109111058100_btac168-B8) 2021; 184
Lakkis (2023020109111058100_btac168-B19) 2021; 31
Satija (2023020109111058100_btac168-B29) 2015; 33
Li (2023020109111058100_btac168-B20) 2019; 4
Baron (2023020109111058100_btac168-B2) 2016; 3
Wan (2023020109111058100_btac168-B41) 2020; 30
Klein (2023020109111058100_btac168-B17) 2017; 17
Sun (2023020109111058100_btac168-B34) 2019; 10
Song (2023020109111058100_btac168-B31) 2020; 11
Li (2023020109111058100_btac168-B21) 2020; 11
Tung (2023020109111058100_btac168-B37) 2017; 7
Wadsworth (2023020109111058100_btac168-B40) 2017; 18
Welch (2023020109111058100_btac168-B43) 2019; 177
Wu (2023020109111058100_btac168-B45) 2014; 9
Macosko (2023020109111058100_btac168-B22) 2015; 161
Rosenberg (2023020109111058100_btac168-B28) 2007
Korsunsky (2023020109111058100_btac168-B18) 2019; 16
Weir (2023020109111058100_btac168-B42) 2002; 36
Butler (2023020109111058100_btac168-B4) 2018; 36
References_xml – volume: 33
  start-page: 495
  year: 2015
  ident: 2023020109111058100_btac168-B29
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3192
– volume: 177
  start-page: 1888
  year: 2019
  ident: 2023020109111058100_btac168-B32
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 9
  start-page: 72
  year: 2011
  ident: 2023020109111058100_btac168-B16
  article-title: Counting absolute numbers of molecules using unique molecular identifiers
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1778
– volume: 9
  start-page: 1
  year: 2019
  ident: 2023020109111058100_btac168-B44
  article-title: DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-46932-z
– volume: 14
  start-page: 483
  year: 2017
  ident: 2023020109111058100_btac168-B14
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4236
– volume: 11
  start-page: 1
  year: 2020
  ident: 2023020109111058100_btac168-B21
  article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
  publication-title: Nat. Commun
– volume: 22
  start-page: bbab034
  year: 2021
  ident: 2023020109111058100_btac168-B33
  article-title: Accurate feature selection improves single-cell RNA-seq cell clustering
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbab034
– volume: 8
  start-page: 870
  year: 2013
  ident: 2023020109111058100_btac168-B23
  article-title: Single-cell analysis and sorting using droplet-based microfluidics
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2013.046
– volume: 364
  start-page: 685
  year: 2019
  ident: 2023020109111058100_btac168-B38
  article-title: Single-cell genomics identifies cell type–specific molecular changes in autism
  publication-title: Science
  doi: 10.1126/science.aav8130
– year: 2015
  ident: 2023020109111058100_btac168-B35
– volume: 9
  start-page: 1
  year: 2018
  ident: 2023020109111058100_btac168-B13
  article-title: Discovery of rare cells from voluminous single cell expression data
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-07234-6
– volume: 20
  start-page: 273
  year: 2019
  ident: 2023020109111058100_btac168-B15
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat. Rev. Genet
  doi: 10.1038/s41576-018-0088-9
– volume: 10
  start-page: 317
  year: 2019
  ident: 2023020109111058100_btac168-B5
  article-title: Single-cell RNA-seq technologies and related computational data analysis
  publication-title: Front. Genet
  doi: 10.3389/fgene.2019.00317
– volume: 9
  start-page: e89694
  year: 2014
  ident: 2023020109111058100_btac168-B45
  article-title: PolyaPeak: detecting transcription factor binding sites from ChIP-seq using peak shape information
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089694
– volume: 30
  start-page: 205
  year: 2020
  ident: 2023020109111058100_btac168-B41
  article-title: SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection
  publication-title: Genome Res
  doi: 10.1101/gr.254557.119
– volume: 33
  start-page: 155
  year: 2015
  ident: 2023020109111058100_btac168-B3
  article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3102
– volume: 19
  start-page: 645
  year: 2010
  ident: 2023020109111058100_btac168-B47
  article-title: MM algorithms for some discrete multivariate distributions
  publication-title: J. Comput. Graph. Stat
  doi: 10.1198/jcgs.2010.09014
– start-page: 410
  year: 2007
  ident: 2023020109111058100_btac168-B28
– volume: 21
  start-page: 1
  year: 2020
  ident: 2023020109111058100_btac168-B36
  article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1850-9
– volume: 58
  start-page: 30
  year: 2004
  ident: 2023020109111058100_btac168-B11
  article-title: A tutorial on mm algorithms
  publication-title: Am. Stat
  doi: 10.1198/0003130042836
– volume: 11
  start-page: 1
  year: 2020
  ident: 2023020109111058100_btac168-B31
  article-title: Flexible experimental designs for valid single-cell RNA-sequencing experiments allowing batch effects correction
  publication-title: Nat. Commun
  doi: 10.1038/s41467-020-16905-2
– volume: 7
  start-page: 39921
  year: 2017
  ident: 2023020109111058100_btac168-B37
  article-title: Batch effects and the effective design of single-cell gene expression studies
  publication-title: Sci. Rep
  doi: 10.1038/srep39921
– volume: 10
  start-page: 1096
  year: 2013
  ident: 2023020109111058100_btac168-B24
  article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2639
– volume: 36
  start-page: 411
  year: 2018
  ident: 2023020109111058100_btac168-B4
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4096
– volume: 10
  start-page: 1
  year: 2019
  ident: 2023020109111058100_btac168-B34
  article-title: A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
  publication-title: Nat. Commun
– volume: 31
  start-page: 1753
  year: 2021
  ident: 2023020109111058100_btac168-B19
  article-title: A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
  publication-title: Genome Res
  doi: 10.1101/gr.271874.120
– volume: 19
  start-page: 562
  year: 2018
  ident: 2023020109111058100_btac168-B10
  article-title: Missing data and technical variability in single-cell RNA-sequencing experiments
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx053
– volume: 44
  start-page: e117
  year: 2016
  ident: 2023020109111058100_btac168-B12
  article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 17
  start-page: 1
  year: 2016
  ident: 2023020109111058100_btac168-B9
  article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0938-8
– volume: 21
  start-page: 1196
  year: 2020
  ident: 2023020109111058100_btac168-B25
  article-title: Clustering and classification methods for single-cell RNA-sequencing data
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbz062
– volume: 19
  start-page: 716
  year: 1974
  ident: 2023020109111058100_btac168-B1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Automat. Contr
  doi: 10.1109/TAC.1974.1100705
– volume: 17
  start-page: 2540
  year: 2017
  ident: 2023020109111058100_btac168-B17
  article-title: InDrops and Drop-seq technologies for single-cell sequencing
  publication-title: Lab Chip
  doi: 10.1039/C7LC90070H
– volume: 6
  start-page: 461
  year: 1978
  ident: 2023020109111058100_btac168-B30
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176344136
– volume: 177
  start-page: 1873
  year: 2019
  ident: 2023020109111058100_btac168-B43
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 32
  start-page: 215
  year: 1989
  ident: 2023020109111058100_btac168-B27
  article-title: Maximum likelihood estimation of dirichlet distributions
  publication-title: J. Stat. Comput. Simul
  doi: 10.1080/00949658908811178
– volume: 11
  start-page: 2837
  year: 2010
  ident: 2023020109111058100_btac168-B39
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res
– volume: 16
  start-page: 1289
  year: 2019
  ident: 2023020109111058100_btac168-B18
  article-title: Fast, sensitive and accurate integration of single-cell data with harmony
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 66
  start-page: 846
  year: 1971
  ident: 2023020109111058100_btac168-B26
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 2
  start-page: lqaa078
  year: 2020
  ident: 2023020109111058100_btac168-B46
  article-title: ComBat-seq: batch effect adjustment for RNA-seq count data
  publication-title: NAR Genom. Bioinform
  doi: 10.1093/nargab/lqaa078
– volume: 3
  start-page: 346
  year: 2016
  ident: 2023020109111058100_btac168-B2
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2023020109111058100_btac168-B8
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 39
  start-page: 1
  year: 1977
  ident: 2023020109111058100_btac168-B6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Series B Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 36
  start-page: 721
  year: 2002
  ident: 2023020109111058100_btac168-B42
  article-title: Estimating f-statistics
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.genet.36.050802.093940
– volume: 4
  start-page: 1284
  year: 2019
  ident: 2023020109111058100_btac168-B20
  article-title: JuliaCall: an R package for seamless integration between R and Julia
  publication-title: J. Open Source Softw
  doi: 10.21105/joss.01284
– volume: 36
  start-page: 421
  year: 2018
  ident: 2023020109111058100_btac168-B7
  article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4091
– volume: 18
  start-page: 1
  year: 2017
  ident: 2023020109111058100_btac168-B40
  article-title: An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
  publication-title: BMC Bioinformatics
– volume: 161
  start-page: 1202
  year: 2015
  ident: 2023020109111058100_btac168-B22
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
SSID ssj0051444
ssj0005056
Score 2.4209032
Snippet Abstract Motivation Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the...
Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the measurement of transcriptomic profiles at the single-cell level....
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2692
Title EDClust: an EM–MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/35323889
https://www.proquest.com/docview/2664799929
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7ckEIvTdKn28RsIaeCsFa78q5yC65NDrETigu-iX1SQ5CLHwHf8h_6D_tLuqOHixNK2hxX7I7EzIj5mJ35BuCUe5_2pFeR8p5HXGci0s6JyAiTMGMDhFClpS_FeCyn0-y6BbTphbl_hZ-xrp7NaxJRJC7u6pUytIftvTSV6NmTq-mfoo4YqWGqRYACvJppi9TeMmZNg_BfZe7Epp1-twewsww_w4MnfPghvKyxJjmvnOMIWq54Bc-r6ZOb12AHX_o36-XqjKiCDEa_7n6ORuT7Blu4SDVYmgSxBFP7xODGkrWQzArSVCFGy7XGPA7BhENYllu_js9JXaAdnr6Bb8PBpH8R1UMXIoMzrKLExtpTpS3XPWY1Ri9tjJeOe6HjVCXOSqGozWLPTYBfsRbUZ4YyqY1D9PUW9op54d4DYT0TAJDS1PoE9Z_FiXKGc2eVSa2ibUgbdeemZiTHwRg3eXUzzvJdDea1BtvQ3Z77UXFyPHric7DmP2_-1Bg9D_8aqk4Vbr5e5gHMcBEQdZK14V3lDVuZLGUB_cjsw_-86iO8SLCdAtlg2THsrRZrdwL75nY1Wy468ExMZad08N88cAK7
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EDClust%3A+an+EM%E2%80%93MM+hybrid+method+for+cell+clustering+in+multiple-subject+single-cell+RNA+sequencing&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wei%2C+Xin&rft.au=Li%2C+Ziyi&rft.au=Ji%2C+Hongkai&rft.au=Wu%2C+Hao&rft.date=2022-05-13&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=38&rft.issue=10&rft.spage=2692&rft.epage=2699&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btac168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon