Knowledge-Base Constrained Optimization Evolutionary Algorithm and its Applications

The most existing constrained optimization evolutionary algorithms (COEAs) for solving constrained optimization problems (COPs) only focus on combining a single EA with a single constraint-handling technique (CHT). As a result, the search ability of these algorithms could be limited. Motivated by th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mechanics and Materials Ročník 536-537; číslo Advances in Mechatronics, Robotics and Automation II; s. 476 - 480
Hlavný autor: Long, Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Zurich Trans Tech Publications Ltd 01.04.2014
Predmet:
ISBN:9783038350781, 3038350788
ISSN:1660-9336, 1662-7482, 1662-7482
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The most existing constrained optimization evolutionary algorithms (COEAs) for solving constrained optimization problems (COPs) only focus on combining a single EA with a single constraint-handling technique (CHT). As a result, the search ability of these algorithms could be limited. Motivated by these observations, we propose an ensemble method which combines different style of EA and CHT from the EA knowledge-base and the CHT knowledge-base, respectively. The proposed method uses two EAs and two CHTs. It randomly combines them to generate novel offspring individuals during each generation. Simulations and comparisons based on four benchmark COPs and engineering optimization problem demonstrate the effectiveness of the proposed approach.
Bibliografia:Selected, peer reviewed papers from the 2014 2nd International Conference on Mechatronics, Robotics and Automation, (ICMRA 2014), March 8-9, 2014, Zhuhai, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISBN:9783038350781
3038350788
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.536-537.476