CNN/Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images
This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses...
Saved in:
| Published in: | International transactions on electrical energy systems Vol. 31; no. 12 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
John Wiley & Sons, Inc
01.12.2021
|
| Subjects: | |
| ISSN: | 2050-7038, 2050-7038 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained.
The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. |
|---|---|
| AbstractList | This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained.
The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained. |
| Author | Özbay, Harun Efe, Serhat Berat Özer, İlyas |
| Author_xml | – sequence: 1 givenname: İlyas surname: Özer fullname: Özer, İlyas email: iozer@bandirma.edu.tr organization: Bandırma Onyedi Eylül University – sequence: 2 givenname: Serhat Berat surname: Efe fullname: Efe, Serhat Berat organization: Bandırma Onyedi Eylül University – sequence: 3 givenname: Harun surname: Özbay fullname: Özbay, Harun organization: Bandırma Onyedi Eylül University |
| BookMark | eNqFkMtKA0EQRRtRMMas3Ta4TtKPeWWpIT4gRsHsm37UxA6T6Un3DCGu_AS_0S9xkoiIC61NFcU9Vdx7ho5LVwJCF5QMKCFsyEhM-inh2YByRqIj1PneHP-YT1EvhCVpaxRRmmYd9DqezYbX9uPtffo8f2ibkgEMNgAVLkD60pYLLIuF87Z-WeHceawLGYLNrZa1dSV2Oa7cBjxeN7Kw9RYbG-rGK1lqCFhtcRN2N0IFuvZu4eUK25VcQDhHJ7ksAvS-ehfNbybz8V1_-nh7P76a9jWnSdQ3kUrTTCZUGU01Mxwy0AkBHgGD1qwaSa4ywkc0NqlOeKTUSLPMGEkypgzvosvD2cq7dQOhFkvX-LL9KFhC45glUUJbVXxQae9C8JALbeu9wdpLWwhKxC5osYtS7KIU-6BbbviLq3xrz2__IJIDsbEFbP-Ti8l88nQAPwEM6pOR |
| CitedBy_id | crossref_primary_10_1155_2022_3740634 crossref_primary_10_33383_2024_088 crossref_primary_10_1088_1742_6596_2814_1_012029 crossref_primary_10_35414_akufemubid_1528549 crossref_primary_10_1016_j_rser_2023_114094 crossref_primary_10_1007_s10462_024_10773_8 crossref_primary_10_1016_j_epsr_2022_108887 crossref_primary_10_1038_s41598_025_14073_1 crossref_primary_10_34248_bsengineering_1608596 crossref_primary_10_1016_j_prime_2025_100919 |
| Cites_doi | 10.1109/SPEC.2016.7846169 10.1016/j.apenergy.2018.09.160 10.3390/en12071280 10.1016/j.epsr.2018.05.018 10.1080/15325008.2019.1666178 10.1016/j.ijepes.2012.05.052 10.1109/TPWRD.2003.822537 10.3390/en10010107 10.1016/j.rser.2014.08.070 10.1016/j.measurement.2016.10.013 10.1016/j.epsr.2012.09.007 10.1109/APEC39645.2020.9124252 10.1016/j.rser.2015.07.068 10.1016/j.asoc.2009.10.013 10.1109/ICHQP.2018.8378902 10.1109/61.997958 10.1109/IJCNN.2019.8852287 10.1016/j.neucom.2017.07.021 10.1109/61.847259 10.1109/TSG.2020.2982351 10.1186/s41601-019-0139-z 10.3906/elk-2006-29 10.1016/j.ijepes.2009.01.012 10.3906/elk-1112-51 10.1109/TPWRD.2009.2028792 10.1109/TIE.2008.928111 10.1002/2050-7038.12008 10.1016/j.neucom.2012.09.037 10.1016/j.ijepes.2007.07.003 10.1016/j.ijepes.2010.10.001 10.1016/j.ijepes.2014.04.015 10.1016/j.epsr.2010.10.032 10.1016/j.epsr.2009.08.014 10.1016/j.measurement.2018.06.059 10.1016/j.epsr.2010.07.001 10.1016/j.aej.2021.02.050 10.1016/j.epsr.2012.02.009 10.1016/j.eswa.2007.06.005 10.1109/TAPENERGY.2017.8397249 10.1016/j.epsr.2008.03.002 10.1016/j.neucom.2011.08.010 10.1016/j.neucom.2012.08.031 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1002/2050-7038.13204 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2050-7038 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_2050_7038_13204 ETEP13204 |
| Genre | article |
| GrantInformation_xml | – fundername: Scientific Research Project (BAP) Coordinatorship of Bandırma Onyedi Eylül University funderid: BAP‐19‐1003‐006 |
| GroupedDBID | 1OC 24P 31~ 8-1 8-4 8-5 AAEVG AAHHS AAJEY AANHP AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCMX ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA GROUPED_DOAJ IX1 L8X LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E QB0 RHX SUPJJ WIH WIK AAMMB AAYXX ABJCF ADMLS AEFGJ AEUYN AFFHD AFKRA AGQPQ AGXDD AIDQK AIDYY ALUQN ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU CITATION HCIFZ M7S PCBAR PHGZM PHGZT PQGLB PTHSS 1OB 7SP 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c3164-d4b778a61bdc1c2d3e8ec60e34e2e320b9a3b803915d7c634bb9c28dda082bd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718204800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-7038 |
| IngestDate | Sat Sep 06 07:30:37 EDT 2025 Tue Nov 18 21:27:33 EST 2025 Sat Nov 29 06:29:57 EST 2025 Wed Jan 22 16:26:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3164-d4b778a61bdc1c2d3e8ec60e34e2e320b9a3b803915d7c634bb9c28dda082bd3 |
| Notes | Funding information Handling Editor Wu Xuan Scientific Research Project (BAP) Coordinatorship of Bandırma Onyedi Eylül University, Grant/Award Number: BAP‐19‐1003‐006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2615526461 |
| PQPubID | 2034359 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2615526461 crossref_citationtrail_10_1002_2050_7038_13204 crossref_primary_10_1002_2050_7038_13204 wiley_primary_10_1002_2050_7038_13204_ETEP13204 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | International transactions on electrical energy systems |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2019; 7 2002; 17 2018; 163 2010; 10 2019; 2019 2009; 24 2019; 4 2018; 128 2013; 21 2015; 51 2021; 29 2011; 81 2019; 12 2013; 103 2011; 33 2008; 78 2008; 35 2020; 11 2008; 30 2010; 80 2014; 61 2012; 77 2017; 95 2009; 56 2020; 2020 2018; 272 2020; 1 2009; 31 2000; 15 2004; 19 2013; 95 2015; 41 2017; 10 2019; 47 2017; 34 2018 2019; 29 2019; 235 2016 2015 2021; 60 2018; 11 2012; 88 2012; 43 2014; 125 2010; 9 e_1_2_9_30_1 Anis Ibrahim WR (e_1_2_9_12_1) 2002; 17 Santoso S (e_1_2_9_26_1) 2000; 15 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 Ozer I (e_1_2_9_31_1) 2018; 272 Ekici S (e_1_2_9_9_1) 2020; 1 Feng C (e_1_2_9_36_1) 2020; 11 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 Özbay H (e_1_2_9_33_1) 2021; 29 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 Zhao W (e_1_2_9_6_1) 2019; 4 González‐De‐La‐Rosa JJ (e_1_2_9_8_1) 2018; 11 Glorot X (e_1_2_9_37_1) 2010; 9 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_46_1 Ma J (e_1_2_9_19_1) 2017; 34 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_4_1 e_1_2_9_3_1 Shi X (e_1_2_9_5_1) 2019; 7 Shen Y (e_1_2_9_21_1) 2019; 12 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 Zhang M (e_1_2_9_2_1) 2011; 81 e_1_2_9_29_1 |
| References_xml | – volume: 41 start-page: 495 year: 2015 end-page: 505 article-title: A critical review of detection and classification of power quality events publication-title: Renew Sust Energ Rev – volume: 56 start-page: 212 issue: 1 year: 2009 end-page: 220 article-title: Power quality disturbance classification using fuzzy C‐means algorithm and adaptive particle swarm optimization publication-title: IEEE Trans Ind Electron – volume: 29 start-page: 78 issue: 1 year: 2021 end-page: 97 article-title: Effects of COVID‐19 on electric energy consumption in Turkey and ANN‐based short‐term forecasting publication-title: Turk J Electr Eng Comput Sci – volume: 1 year: 2020 article-title: Power quality event classification using optimized Bayesian convolutional neural networks publication-title: Electr Eng – volume: 88 start-page: 130 year: 2012 end-page: 136 article-title: Applications of wavelets in electric power quality: voltage events publication-title: Electr Power Syst Res – start-page: 178 year: 2015 end-page: 181 – volume: 47 start-page: 1332 issue: 14–15 year: 2019 end-page: 1348 article-title: Signal processing and deep learning techniques for power quality events monitoring and classification publication-title: Electr Power Compon Syst – volume: 80 start-page: 71 issue: 1 year: 2010 end-page: 76 article-title: Fuzzy classifiers for power quality events analysis publication-title: Electr Power Syst Res – volume: 81 start-page: 660 issue: 2 year: 2011 end-page: 666 article-title: A real‐time classification method of power quality disturbances publication-title: Electr Power Syst Res – volume: 34 start-page: 408 issue: 4 year: 2017 end-page: 415 article-title: Classification of power quality disturbances via deep learning publication-title: IETE Tech Rev (Institution Electron Telecommun Eng India) – volume: 11 start-page: 1 issue: 3 year: 2018 end-page: 12 article-title: A dual monitoring technique to detect power quality transients based on the fourth‐order spectrogram publication-title: Energies – volume: 21 start-page: 1528 issue: 6 year: 2013 end-page: 1538 article-title: Classification of power quality disturbances using S‐transform and TT‐transform based on the articial neural network publication-title: Turk J Electr Eng Comput Sci – volume: 95 start-page: 246 year: 2017 end-page: 259 article-title: A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network publication-title: Meas J Int Meas Confed – volume: 61 start-page: 594 year: 2014 end-page: 605 article-title: Integrated DWT‐FFT approach for detection and classification of power quality disturbances publication-title: Int J Electr Power Energy Syst – volume: 80 start-page: 1552 issue: 12 year: 2010 end-page: 1561 article-title: Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm publication-title: Electr Power Syst Res – volume: 19 start-page: 1154 issue: 3 year: 2004 end-page: 1166 article-title: A dependency model‐based approach for identifying and evaluating power quality problems publication-title: IEEE Trans Power Deliv – volume: 9 start-page: 249 year: 2010 end-page: 256 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J Mach Learn Res – volume: 35 start-page: 143 issue: 1–2 year: 2008 end-page: 149 article-title: Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines publication-title: Expert Syst Appl – volume: 4 start-page: 27 issue: 1 year: 2019 article-title: Power quality disturbance classification based on time‐frequency domain multi‐feature and decision tree publication-title: Prot Control Mod Power Syst – volume: 30 start-page: 254 issue: 4 year: 2008 end-page: 260 article-title: Recognition of power quality events by using multiwavelet‐based neural networks publication-title: Int J Electr Power Energy Syst – start-page: 1 year: 2018 end-page: 6 – volume: 51 start-page: 1650 year: 2015 end-page: 1663 article-title: A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances publication-title: Renew Sust Energ Rev – volume: 15 start-page: 247 issue: 4 year: 2000 end-page: 254 article-title: Characterization of distribution power quality events with Fourier and wavelet transforms publication-title: IEEE Trans Power Deliv – volume: 235 start-page: 1126 year: 2019 end-page: 1140 article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network publication-title: Appl Energy – volume: 77 start-page: 36 issue: 1 year: 2012 end-page: 47 article-title: Optimization techniques for improving power quality data mining using wavelet packet based support vector machine publication-title: Neurocomputing – volume: 272 start-page: 505 year: 2018 end-page: 512 article-title: Noise robust sound event classification with convolutional neural network publication-title: Neurocomputing – volume: 128 start-page: 276 year: 2018 end-page: 283 article-title: Real‐time system for automatic detection and classification of single and multiple power quality disturbances publication-title: Meas J Int Meas Confed – volume: 103 start-page: 75 year: 2013 end-page: 86 article-title: Power quality event characterization using support vector machine and optimization using advanced immune algorithm publication-title: Neurocomputing – volume: 24 start-page: 2159 issue: 4 year: 2009 end-page: 2165 article-title: Empirical‐mode decomposition with hilbert transform for power‐quality assessment publication-title: IEEE Trans Power Deliv – volume: 31 start-page: 206 issue: 5 year: 2009 end-page: 212 article-title: Power quality analysis applying a hybrid methodology with wavelet transforms and neural networks publication-title: Int J Electr Power Energy Syst – volume: 78 start-page: 1747 issue: 10 year: 2008 end-page: 1755 article-title: An effective wavelet‐based feature extraction method for classification of power quality disturbance signals publication-title: Electr Power Syst Res – volume: 10 start-page: 945 issue: 3 year: 2010 end-page: 955 article-title: Power quality time series data mining using S‐transform and fuzzy expert system publication-title: Appl Soft Comput J – volume: 7 year: 2019 article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features publication-title: IEEE Access – volume: 43 start-page: 688 issue: 1 year: 2012 end-page: 695 article-title: Classification of power system disturbances using linear Kalman filter and fuzzy‐expert system publication-title: Int J Electr Power Energy Syst – volume: 2020 start-page: 2303 year: 2020 end-page: 2307 – volume: 2019 start-page: 5 year: 2019 end-page: 10 – volume: 33 start-page: 402 issue: 3 year: 2011 end-page: 410 article-title: Study of a new method for power system transients classification based on wavelet entropy and neural network publication-title: Int J Electr Power Energy Syst – volume: 29 start-page: 1 issue: 8 year: 2019 end-page: 42 article-title: Power quality disturbance detection and classification using signal processing and soft computing techniques: a comprehensive review publication-title: Int Trans Electr Energy Syst – volume: 163 start-page: 1 year: 2018 end-page: 9 article-title: Complex power quality disturbances classification via curvelet transform and deep learning publication-title: Electr Power Syst Res – volume: 60 start-page: 3807 issue: 4 year: 2021 end-page: 3818 article-title: A combined deep learning application for short term load forecasting publication-title: Alex Eng J – volume: 17 start-page: 668 issue: 2 year: 2002 end-page: 673 article-title: Artificial intelligence and advanced mathematical tools for power quality applications: a survey publication-title: IEEE Trans Power Deliv – volume: 10 start-page: 1 issue: 1 year: 2017 end-page: 19 article-title: Power quality disturbance classification using the S‐transform and probabilistic neural network publication-title: Energies – volume: 95 start-page: 192 year: 2013 end-page: 199 article-title: A new classification for power quality events in distribution systems publication-title: Electr Power Syst Res – start-page: 1 year: 2016 end-page: 6 – volume: 125 start-page: 95 year: 2014 end-page: 101 article-title: A new classification method for transient power quality combining spectral kurtosis with neural network publication-title: Neurocomputing – volume: 12 start-page: 1 issue: 7 year: 2019 end-page: 26 article-title: Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind‐grid distribution systems publication-title: Energies – volume: 11 start-page: 4490 issue: 5 year: 2020 end-page: 4501 article-title: Deep learning‐based real‐time building occupancy detection using AMI data publication-title: IEEE Trans Smart Grid – ident: e_1_2_9_28_1 doi: 10.1109/SPEC.2016.7846169 – ident: e_1_2_9_38_1 doi: 10.1016/j.apenergy.2018.09.160 – volume: 12 start-page: 1 issue: 7 year: 2019 ident: e_1_2_9_21_1 article-title: Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind‐grid distribution systems publication-title: Energies doi: 10.3390/en12071280 – ident: e_1_2_9_27_1 doi: 10.1016/j.epsr.2018.05.018 – ident: e_1_2_9_10_1 doi: 10.1080/15325008.2019.1666178 – ident: e_1_2_9_11_1 doi: 10.1016/j.ijepes.2012.05.052 – ident: e_1_2_9_29_1 doi: 10.1109/TPWRD.2003.822537 – volume: 9 start-page: 249 year: 2010 ident: e_1_2_9_37_1 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J Mach Learn Res – ident: e_1_2_9_45_1 doi: 10.3390/en10010107 – ident: e_1_2_9_7_1 doi: 10.1016/j.rser.2014.08.070 – ident: e_1_2_9_20_1 doi: 10.1016/j.measurement.2016.10.013 – ident: e_1_2_9_16_1 doi: 10.1016/j.epsr.2012.09.007 – volume: 34 start-page: 408 issue: 4 year: 2017 ident: e_1_2_9_19_1 article-title: Classification of power quality disturbances via deep learning publication-title: IETE Tech Rev (Institution Electron Telecommun Eng India) – ident: e_1_2_9_17_1 doi: 10.1109/APEC39645.2020.9124252 – ident: e_1_2_9_23_1 doi: 10.1016/j.rser.2015.07.068 – volume: 11 start-page: 1 issue: 3 year: 2018 ident: e_1_2_9_8_1 article-title: A dual monitoring technique to detect power quality transients based on the fourth‐order spectrogram publication-title: Energies – ident: e_1_2_9_41_1 doi: 10.1016/j.asoc.2009.10.013 – ident: e_1_2_9_35_1 doi: 10.1109/ICHQP.2018.8378902 – volume: 17 start-page: 668 issue: 2 year: 2002 ident: e_1_2_9_12_1 article-title: Artificial intelligence and advanced mathematical tools for power quality applications: a survey publication-title: IEEE Trans Power Deliv doi: 10.1109/61.997958 – ident: e_1_2_9_22_1 doi: 10.1109/IJCNN.2019.8852287 – volume: 272 start-page: 505 year: 2018 ident: e_1_2_9_31_1 article-title: Noise robust sound event classification with convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.021 – volume: 15 start-page: 247 issue: 4 year: 2000 ident: e_1_2_9_26_1 article-title: Characterization of distribution power quality events with Fourier and wavelet transforms publication-title: IEEE Trans Power Deliv doi: 10.1109/61.847259 – volume: 11 start-page: 4490 issue: 5 year: 2020 ident: e_1_2_9_36_1 article-title: Deep learning‐based real‐time building occupancy detection using AMI data publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2982351 – volume: 4 start-page: 27 issue: 1 year: 2019 ident: e_1_2_9_6_1 article-title: Power quality disturbance classification based on time‐frequency domain multi‐feature and decision tree publication-title: Prot Control Mod Power Syst doi: 10.1186/s41601-019-0139-z – volume: 29 start-page: 78 issue: 1 year: 2021 ident: e_1_2_9_33_1 article-title: Effects of COVID‐19 on electric energy consumption in Turkey and ANN‐based short‐term forecasting publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-2006-29 – ident: e_1_2_9_13_1 doi: 10.1016/j.ijepes.2009.01.012 – ident: e_1_2_9_32_1 doi: 10.3906/elk-1112-51 – ident: e_1_2_9_43_1 doi: 10.1109/TPWRD.2009.2028792 – ident: e_1_2_9_47_1 doi: 10.1109/TIE.2008.928111 – ident: e_1_2_9_4_1 doi: 10.1002/2050-7038.12008 – ident: e_1_2_9_39_1 doi: 10.1016/j.neucom.2012.09.037 – ident: e_1_2_9_48_1 doi: 10.1016/j.ijepes.2007.07.003 – ident: e_1_2_9_24_1 doi: 10.1016/j.ijepes.2010.10.001 – ident: e_1_2_9_40_1 doi: 10.1016/j.ijepes.2014.04.015 – volume: 81 start-page: 660 issue: 2 year: 2011 ident: e_1_2_9_2_1 article-title: A real‐time classification method of power quality disturbances publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2010.10.032 – ident: e_1_2_9_14_1 doi: 10.1016/j.epsr.2009.08.014 – ident: e_1_2_9_30_1 – volume: 7 start-page: 20961–20966 year: 2019 ident: e_1_2_9_5_1 article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features publication-title: IEEE Access – ident: e_1_2_9_18_1 doi: 10.1016/j.measurement.2018.06.059 – ident: e_1_2_9_42_1 doi: 10.1016/j.epsr.2010.07.001 – ident: e_1_2_9_3_1 doi: 10.1016/j.aej.2021.02.050 – ident: e_1_2_9_25_1 doi: 10.1016/j.epsr.2012.02.009 – ident: e_1_2_9_49_1 doi: 10.1016/j.eswa.2007.06.005 – volume: 1 year: 2020 ident: e_1_2_9_9_1 article-title: Power quality event classification using optimized Bayesian convolutional neural networks publication-title: Electr Eng – ident: e_1_2_9_34_1 doi: 10.1109/TAPENERGY.2017.8397249 – ident: e_1_2_9_46_1 doi: 10.1016/j.epsr.2008.03.002 – ident: e_1_2_9_44_1 doi: 10.1016/j.neucom.2011.08.010 – ident: e_1_2_9_15_1 doi: 10.1016/j.neucom.2012.08.031 |
| SSID | ssj0000941178 |
| Score | 2.4173687 |
| Snippet | This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial neural networks bi‐LSTM Classification convolutional neural network Deep learning Disturbances energy quality Image classification Image quality Machine learning power system analysis Sine waves spectrogram Spectrograms |
| Title | CNN/Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2050-7038.13204 https://www.proquest.com/docview/2615526461 |
| Volume | 31 |
| WOSCitedRecordID | wos000718204800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BywEO7IiyyQcOXEITx02dI0srDqWqoEi9RfHSUqmbmoIEJz6Bb-RL8DjpAhJCSJziSLEVe8b2G3vmDcApl4G9D3KQPNxh2pR4iWkn9OMSDxkPgzazySbK9TpvtcJG5k2IsTApP8TswA1nhl2vcYLHIinOSUOpW3Ido6_8HKOA2TLkqXljOchf31UfarODFmO_eJ5dkWc1phQ_Li1-a-Xr7jSHnIvA1e481Y1_-OdNWM9gJ7lI9WQLlvRgG9YWyAh34PWqXi9edj_e3mv3zVvzwA1OEaX1iGS5JTok7nWG4-7ksU8M2CUSoTf6GlnxkmGbjDDpGkkjNV-IMjr0NBaoWAkRLwSd7DvEBnembmGk2zfrWbILzWqleXXjZJkZHOkb-8pRTJTLPA48oaQnqfI110bo2meaatMzEca-4JZ8XpVl4DMhQkm5UrFBHEL5e5AbDAd6H4grlTEQXd32BGdILsg8jSaVENr1jOYU4HwqkEhmrOWYPKMXpXzLNMIxjXBMIzumBTibVRilhB0_f3o0lXCUzdwkonhRa1Bi4BWgaGX5WzNRpVlp2NLBn2scwipFJxnrH3MEucn4SR_DinyedJPxSabKn54l8Rw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BQQIO7Iiy-sCBS2gWN3WOLK1AlAhBkLhZ8dJSCdqqLUhw4hP4Rr4Ej5OWgoQQEqf4EFvJzLM9Y8-8AdhjMrT3QQ6ShztUmxYrU-1EQVpmEWVR2KC22EQljtntbTSeC5PxQ4wO3HBm2PUaJzgeSJc-WUN9t-w6BrDsANOA6SRMUQOmcgGmTq5qN_XRSYtxYDzPLsmjHkOOH9cvfRvl6_b0aXOOW65266kt_MdHL8J8bniSwwwpSzCh28swN0ZHuAIvx3FcOmq9v77Vr5ML88AtThGldZfk1SWaJL1vdnqtwd0DMeYukWh8Y7SRVTDpNEgXy66RLFfzmSiDoseeQGj1iXgmGGbfJDa9MwsMI60Hs6L1VyGpVZPjUyevzeDIwHhYjqKiUmFp6AklPemrQDNt1K4Dqn1t_kxEaSCYpZ9XFRkGVIhI-kyp1NgcQgVrUGh32nodiCuVcRFd3fAEo0gvSD2NTpUQ2vUMdopwMNQIlzlvOZbPuOcZ47LPUaYcZcqtTIuwP-rQzSg7fn51a6hins_dPvfxqtbYiaFXhJJV5m_D8GpSvbStjT_32IWZ0-Sizutn8fkmzPoYMmOjZbagMOg96m2Ylk-DVr-3k-P6Ax-H9Qw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xCcGBHVFWHzhwCc3ips4RughEiRAUiZsVLy2VSlu1BQlOfALfyJfgcdJSkBBC4hQfYivxzNhv7Jk3AIdMhvY-yEHycIdq02IFqp0oSAosoiwKG9QWmyjGMbu7iyZzYVJ-iPGBG1qGXa_RwHVPNfKfrKG-W3Ado7DsGNOA6TTM0kIUGuOcLV9Xb2vjkxbjwHieXZLHPUYcP66f_zbK1-3pE3NOIle79VSX_-OjV2ApA57kJNWUVZjSnTVYnKAjXIeXUhznT1vvr2-1m_qleeAWp4jSukey6hJNkrSb3X5reP9ADNwlEsE3RhtZAZNug_Sw7BpJczWfiTJa9NgXqFoDIp4Jhtk3iU3vTAPDSOvBrGiDDahXK_XSmZPVZnBkYDwsR1FRLLIk9ISSnvRVoJk2YtcB1b42fyaiJBDM0s-rogwDKkQkfaZUYjCHUMEmzHS6Hb0FxJXKuIiubniCUaQXpJ5Gp0oI7XpGd3JwPJIIlxlvOZbPaPOUcdnnOKcc55TbOc3B0bhDL6Xs-PnV3ZGIeWa7A-7jVa3BiaGXg7wV5m_D8Eq9cmVb23_ucQDzV-Uqr53HFzuw4GPEjA2W2YWZYf9R78GcfBq2Bv39TK0_ALfW9Ic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN%2FBi%E2%80%90LSTM%E2%80%90based+deep+learning+algorithm+for+classification+of+power+quality+disturbances+by+using+spectrogram+images&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=%C3%96zer%2C+%C4%B0lyas&rft.au=Efe%2C+Serhat+Berat&rft.au=%C3%96zbay%2C+Harun&rft.date=2021-12-01&rft.issn=2050-7038&rft.eissn=2050-7038&rft.volume=31&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2F2050-7038.13204&rft.externalDBID=10.1002%252F2050-7038.13204&rft.externalDocID=ETEP13204 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon |